精英家教网 > 高中数学 > 题目详情
12.已知椭圆C的焦点在x轴上,离心率e=$\frac{\sqrt{2}}{2}$,其长轴的左端点到左焦点的距离为2-$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)直线l为圆x2+y2=1上的一条切线,交椭圆C于A,B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

分析 (1)由题意可知:$\left\{\begin{array}{l}{a-c=2-\sqrt{2}}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\end{array}\right.$,求得a及c的值,由a2=b2+c2,即可求得b的值,求得椭圆C的标准方程;
(2)分类讨论,当斜率不存在时,求得A和B点坐标,即可求得$\overrightarrow{OA}$•$\overrightarrow{OB}$的值,当斜率存在,设出直线方程,由直线l与圆x2+y2=1相切,求得n与k的关系,并将直线方程代入椭圆方程,根据韦达定理求得x1+x2和x1•x2,并求得y1•y2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2,代入即可求得$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

解答 解:(1)由题意可知:$\left\{\begin{array}{l}{a-c=2-\sqrt{2}}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\end{array}\right.$,解得a=2,c=$\sqrt{2}$,
由a2=b2+c2
∴b=$\sqrt{2}$,
故椭圆方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)当直线斜率不存在时,l:x=±1,A(1,-$\frac{\sqrt{6}}{2}$),B(1,$\frac{\sqrt{6}}{2}$)
或A(-1,-$\frac{\sqrt{6}}{2}$),B(-1,$\frac{\sqrt{6}}{2}$),
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=1-$\frac{3}{2}$=-$\frac{1}{2}$,
当直线斜率存在时,设直线方程l:y=kx+n,A(x1,y1),B(x2,y2),
∵直线AB与圆x2+b2=1相切,
∴$\frac{1}{\sqrt{1+{k}^{2}}}$•丨n丨=1,解得n2=1+k2
将直线方程代入椭圆方程整理得:(1+2k2)x2+4knx+2n2-4=0,
由韦达定理可知:x1+x2=$\frac{-4kn}{1+2{k}^{2}}$,x1•x2=$\frac{2{n}^{2}-4}{1+2{k}^{2}}$,
∴y1•y2=k2x1•x2+kn(x1+x2)+n2
$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2
=(1+k2)x1•x2+kn(x1+x2)+n2
=$\frac{3{n}^{2}-4{k}^{2}-4}{1+2{k}^{2}}$,
=-$\frac{{k}^{2}+1}{2{k}^{2}+1}$,
=$\frac{1}{\frac{1}{1+{k}^{2}}-2}$∈[-1,-$\frac{1}{2}$),
综上可知:$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围∈[-1,-$\frac{1}{2}$].

点评 本题主要考查了利用椭圆的性质求解椭圆方程,直线与圆的位置关系,直线与椭圆的相交关系的应用,方程的根与系数关系的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知sinx+cosx=$\frac{1}{5}$,(-$\frac{π}{2}$<x<0),求$\frac{3si{n}^{2}\frac{x}{2}-2cos\frac{x}{2}sin\frac{x}{2}+co{s}^{2}\frac{x}{2}}{sinx-cosx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(1,1),B(-1,5),向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,则点C的坐标为(-3,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程ax+by+c=0表示倾斜角为锐角的直线,则必有(  )
A.ab>1B.ab<0C.a>0或b<0D.a>0且b<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)在R上存在导数f′(x),?x∈R,有g(x)=f(x)-$\frac{1}{2}$x2,且f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,E是A1C1与B1D1的交点,AB=BC=$\sqrt{2}$,AA1=1.
(1)求证:AE∥平面C1BD;
(2)求证:CE⊥平面C1BD;
(3)求二面角A-BC1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若2asinB=$\sqrt{3}$b,A为锐角,求A的值;
(2)若b=5,c=$\sqrt{5}$,cosC=$\frac{9}{10}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在1,3,5,7,9中任取2个不同的数,则这2个数的和大于9的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若从高二男生中随机抽取5名男生,其身高和体重数据如表所示:
身高x(cm)160165170175180
体重y(kg)6366707477
根据如表可得回归方程为:$\widehat{y}$=0.56x+$\widehat{a}$,则预报身高为172的男生的体重(  )
A.71.12B.约为71.12C.约为72D.无法预知

查看答案和解析>>

同步练习册答案