精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,角A,B,C所对边分别是a、b、c,且cosA=
(1)求sin2 +cos2A的值;
(2)若a= ,求△ABC面积的最大值.

【答案】
(1)解:sin2 +cos2A=sin2 +2cos2A﹣1

=cos2 +2cos2A﹣1= +2cos2A﹣1

= +2× ﹣1=﹣


(2)解:cosA= ,可得sinA= =

由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2 bc

≥2bc﹣﹣ bc= bc,

即有bc≤ a2= ,当且仅当b=c= ,取得等号.

则△ABC面积为 bcsinA≤ × × =

即有b=c= 时,△ABC的面积取得最大值


【解析】(1)利用诱导公式及二倍角的余弦公式对式子化简,代入即可得到所求值;(2)运用余弦定理和面积公式,结合基本不等式,即可得到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos2ωx的图象向右平移 个单位,得到函数y=g(x)的图象,若y=g(x)在 上为减函数,则正实数ω的最大值为(
A.
B.1
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P﹣ABCD的侧面积等于4(1+ ),则该外接球的表面积是(
A.4π
B.12π
C.24π
D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,函数y=f[f(x)]﹣1的零点个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xoy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ. (I)求C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,AB=AC,D为△ABC外接圆劣弧 上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F.
(1)求证:∠CDF=∠EDF;
(2)求证:ABACDF=ADFCFB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,公比q>1,且满足a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+5 , 且数列{bn}的前n项的和为Sn , 求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱ABC﹣A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′﹣B′C﹣C′的余弦值;
(2)求线段DE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点P的坐标是(1,0),曲线C的方程为ρ=2 .以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.

查看答案和解析>>

同步练习册答案