精英家教网 > 高中数学 > 题目详情

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

【答案】(1);(2)见解析.

【解析】)由已知,点CD的坐标分别为(0,-b),(0b

又点P的坐标为(01),且=-1

于是,解得a2b

所以椭圆E方程为.

)当直线AB斜率存在时,设直线AB的方程为ykx1

AB的坐标分别为(x1y1),(x2y2

联立,得(2k21x24kx20

其判别式=(4k282k21)>0

所以

从而x1x2y1y2λ[x1x2+(y11)(y21]

=(1λ)(1k2x1x2kx1x2)+1

=-

所以,当λ1时,-=-3

此时, =-3为定值

当直线AB斜率不存在时,直线AB即为直线CD

此时=-21=-3

故存在常数λ=-1,使得为定值-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足: ,anan+1<0(n≥1),数列{bn}满足:bn=an+12﹣an2(n≥1).
(1)求数列{an},{bn}的通项公式
(2)证明:数列{bn}中的任意三项不可能成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为2.

(1)求抛物线的方程;

(2)若直线与圆切于点,与抛物线切于点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C,直线l

求证:直线l与圆C必相交;

求直线l被圆C截得的弦长最短时直线l的方程以及最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,孝感市黄陂路高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

1)能否据此判断有的把握认为视觉和空间能力与性别有关

2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为的数学期望和方差.

附表

参考公式 其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=120°,对角线AC与BD交于点O,M为OC中点.

(1)求证:BD⊥PM
(2)若二面角O﹣PM﹣D的正切值为2 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙H被直线x-y-1=0,x+y-3=0分成面积相等的四个部分,且截x轴所得线段的长为2

(I)求⊙H的方程;

()若存在过点P(0,b)的直线与⊙H相交于MN两点,且点M恰好是线段PN的中点,求实数b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1(侧棱垂直于底面的棱柱为直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.

(1)求证:平面ABC1⊥平面A1B1C;
(2)设D为AC的中点,求平面ABC1与平面C1BD所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用元表示出租自行车的日纯收入日纯收入一日出租自行车的总收入管理费用

求函数的解析式及其定义域;

当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

同步练习册答案