精英家教网 > 高中数学 > 题目详情
4.已知复数z满足z=$\frac{1+i}{i}$,则|z|=$\sqrt{2}$.

分析 利用复数代数形式的乘除运算化简z,然后代入复数模的计算公式求解.

解答 解:∵z=$\frac{1+i}{i}$=$\frac{(1+i)(-i)}{-{i}^{2}}=1-i$,
∴$|z|=\sqrt{{1}^{2}+(-1)^{2}}=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知幂函数$f(x)=({m^2}+m-1){x^{-2{m^2}+m+3}}$在(0,+∞)上为增函数,g(x)=-x2+2|x|+t,h(x)=2x-2-x
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在长方体ABCD-A1B1C1D1中,已知DA=DC=2,DD1=1,则异面直线A1B与B1C所成角的余弦值$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数$f(x)=2sin(2x+\frac{π}{6})$的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0、y0的值;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=1,则a+2b的最小值是(  )
A.3-2$\sqrt{2}$B.3+2$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2-ax+lnx,a∈R.
(1)当a=3时,求函数f(x)的极小值;
(2)令g(x)=x2-f(x),是否存在实数a,当x∈[1,e](e是自然对数的底数)时,函数g(x)取得最小值为1.若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1 中,
(1)画出二面角A-B1C-C1 的平面角
(2)求证:面BB1DD1⊥面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,an+1=$\frac{n+1}{2n}{a_n}$,n∈N*
(1)求证:数列{an}为等比数列.
(2)求{an}数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a>0为常数,若对任意正实数x,y不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥9恒成立,则a的最小值为(  )
A.4B.2C.81D.$\frac{81}{16}$

查看答案和解析>>

同步练习册答案