精英家教网 > 高中数学 > 题目详情
6.已知△ABC中,AC=2,BC=1,∠ACB=$\frac{2π}{3}$,D为AB上的点,若AD=2DB,则cos∠CDB=$\frac{\sqrt{7}}{14}$.

分析 由余弦定理得AB=$\sqrt{7}$,从而得到BD=$\frac{\sqrt{7}}{3}$,∠BCD=60°,再由正弦定理得sin∠CDB=$\frac{3\sqrt{21}}{14}$,由此能求出cos∠CDB的值.

解答 解:∵△ABC中,AC=2,BC=1,∠ACB=$\frac{2π}{3}$,
∴AB2=BC2+AC2-2•BC•AC•cos∠ACB=1+4-2×$1×2×(-\frac{1}{2})$=7,∴AB=$\sqrt{7}$,
∵D为AB上的点,AD=2DB,
∴BD=$\frac{\sqrt{7}}{3}$,
∵AC:BC=AD:BD=2:1,∴CD平分∠ACB,
∴∠BCD=60°,
根据正弦定理得$\frac{\frac{\sqrt{7}}{3}}{sin60°}$=$\frac{1}{sin∠CDB}$,解得sin∠CDB=$\frac{3\sqrt{21}}{14}$,
∴cos∠CDB=$\sqrt{1-(\frac{3\sqrt{21}}{14})^{2}}$=$\frac{\sqrt{7}}{14}$.
故答案为:$\frac{\sqrt{7}}{14}$.

点评 本题考查角的余弦值的求法,是中档题,解题时要认真审题,注意正弦定理和余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.一个四面体的顶点在空间直角坐标系O-xyz的坐标分别是(0,1,1),(1,2,1),(1,1,2),(0,3,3),画出该四面体的正视图时,以yOz平面为投影面,则得到的正视图的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cos(π+α)=-$\frac{1}{2}$,求sin(2π-α)-tan(α-3π)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Rt△ABC,∠C=90°,设AC=m,BC=n
(1)若D为斜边AB的中点,求证:CD=$\frac{1}{2}$AB;
(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长度(用m,n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P的极坐标为$(2,\frac{5π}{6})$,以极点为原点,以极轴为x轴正方向建立直角坐标系,则点P的直角坐标为$(-\sqrt{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x-sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值及此时x的取值集合;
(2)若f(α)=2,且α∈[$\frac{\sqrt{3}}{4}$,$\frac{\sqrt{3}}{2}$],求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图右边是y=logax(a>0,且a≠1)的图象,则下列函数图象正确的是(  )
A.
y=a|x|
B.
y=1+a|x|
C.
y=logax
D.
y=loga(1-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若已知x>$\frac{5}{4}$,函数y=4x+$\frac{1}{4x-5}$的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等比数列{an}中,若a2?a6=8,则log2(a1?a7)等于(  )
A.8B.2C.16D.3

查看答案和解析>>

同步练习册答案