【题目】已知抛物线的焦点为,点是抛物线上一点,且满足.
(1)求、的值;
(2)设、是抛物线上不与重合的两个动点,记直线、与的准线的交点分别为、,若,问直线是否过定点?若是,则求出该定点坐标,否则请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求在处的切线方程;
(2)令,已知函数有两个极值点,且,
①求实数的取值范围;
②若存在,使不等式对任意(取值范围内的值)恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上动点到点距离比它到直线距离少1.
(1)求动点的轨迹方程;
(2)记动点的轨迹为曲线,过点作直线与曲线交于两点,点,延长,,与曲线交于,两点,若直线,的斜率分别为,,试探究是否为定值?若为定值,请求出定值,若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与上下顶点构成直角三角形,以椭圆E的长轴为直径的圆与直线相切.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)为椭圆上不同的三点,为坐标原点,若,试问:的面积是否为定值?若是,请求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从,两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001—900.
(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;
05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74
07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51
51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48
26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94
14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43
(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:
(3)若采用分层轴样,按照学生选择题目或题目,将成绩分为两层,且样本中题目的成绩有8个,平均数为7,方差为4:样本中题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点O与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(为参数,),直线l:,若直线l与曲线C相交于A,B两点,且.
(1)求a;
(2)若M,N为曲线C上的两点,且,求的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com