精英家教网 > 高中数学 > 题目详情

数列{an}满足a1=2,对于任意的n∈N*都有an>0,且(n+1)an2+an·an+1nan+12=0,又知数列{bn}的通项为bn=2n1+1. 

(1)求数列{an}的通项an及它的前n项和Sn

(2)求数列{bn}的前n项和Tn

(3)猜想SnTn的大小关系,并说明理由.

(1) Sn=n2+n,(2) Tn=2n+n-1 (3) 猜想当n≥5时,TnSn,即2nn2+1


解析:

  (1)可解得,从而an=2n,有Sn=n2+n

(2)Tn=2n+n-1.

(3)TnSn=2nn2-1,验证可知,n=1时,T1=S1n=2时T2S2n=3时,T3S3;n=4时,T4S4n=5时,T5S5n=6时T6S6

猜想当n≥5时,TnSn,即2nn2+1

可用数学归纳法证明(略). 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案