12£®Èç¹ûx0Âú×ãf£¨x£©=x£¬Ôò³Æx0Ϊº¯Êýy=f£¨x£©µÄÒ»¸ö²»¶¯µã£¬É輯ºÏA={x|f£¨x£©=x}£¬¼¯ºÏB={x|f[f£¨x£©]=x}£¬ÎªÌ½¾¿¼¯ºÏAºÍBµÄ¹Øϵ£¬Íõ³¬ºÍÕźê×öÁËÈçÏÂ̽¾¿£º
Íõ³¬£ºÈç¹ûÎÒÉèf£¨x£©=2x+3£¬Çó³ö¼¯ºÏAºÍB£¬ÎÒÓÉ´Ë·¢ÏÖÁ˵ÄËüÃǵÄÒ»ÖÖ¹Øϵ£»
Õź꣺Èç¹ûÎÒÉèf£¨x£©=x2-2£¬Çó³ö¼¯ºÏAºÍB£¬ÎÒÒ²ÓÉ´Ë·¢ÏÖÁ˼¯ºÏAºÍBµÄÒ»ÖÖ¹Øϵ£®
£¨1£©Çëд³öÍõ³¬Ñо¿¼¯ºÏAºÍBµÄ¹ØϵµÄ¹ý³Ì£»
£¨2£©Çëд³öÕźêÑо¿¼¯ºÏAºÍBµÄ¹ØϵµÄ¹ý³Ì£»
£¨3£©ÇëÄã×ܽá¹éÄÉÍõ³¬ºÍÕźêµÄÑо¿½á¹û£¨²»ÒªÇóÖ¤Ã÷£©£¬ÔËÓÃÄã·¢ÏֵĽáÂÛ£¬½â¾öÏÂÃæÎÊÌ⣺Èç¹ûµ±f£¨x£©=x2+bx+c£¨b¡¢c¡ÊR£©Ê±£¬A={-2£¬1}£¬Ç󼯺ÏB£®

·ÖÎö £¨1£©ÓÉÒÑÖªÖм¯ºÏA={x|f£¨x£©=x}£¬¼¯ºÏB={x|f[f£¨x£©]=x}£¬Áîf£¨x£©=2x+3£¬¿ÉµÃA=B={-3}£»
£¨2£©Áîf£¨x£©=x2-2£¬¿ÉµÃ£ºA={-1£¬2}£¬B={-1£¬2£¬$\frac{-1-\sqrt{5}}{2}$£¬$\frac{-1+\sqrt{5}}{2}$}£»
£¨3£©ÓÉ£¨1£©£¨2£©µÃA⊆B£¬½ø¶ø½áºÏµ±f£¨x£©=x2+bx+c£¨b¡¢c¡ÊR£©Ê±£¬A={-2£¬1}£¬Çó³öb£¬cµÄÖµ£¬½ø¶ø¿ÉµÃ¼¯ºÏB£®

½â´ð ½â£º£¨1£©µ±f£¨x£©=2x+3ʱ£¬
Áîf£¨x£©=2x+3=x£¬½âµÃx=-3£¬¹ÊA={-3}£¬
Áîf[f£¨x£©]=4x+9=x£¬½âµÃx=-3£¬¹ÊB={-3}£¬
´ËʱA=B
£¨2£©µ±f£¨x£©=x2-2ʱ£¬
Áîf£¨x£©=x2-2=x£¬½âµÃx=-1£¬»òx=2£¬¹ÊA={-1£¬2}£¬
Áîf[f£¨x£©]=x4-4x2+2=x£¬½âµÃx=-3£¬¹ÊB={-1£¬2£¬$\frac{-1-\sqrt{5}}{2}$£¬$\frac{-1+\sqrt{5}}{2}$}£¬
´ËʱA⊆B
£¨3£©¹éÄÉÍõ³¬ºÍÕźêµÄÑо¿½á¹û¿ÉµÃ£ºA⊆B
µ±f£¨x£©=x2+bx+c£¨b¡¢c¡ÊR£©Ê±£¬A={-2£¬1}£¬
Ôò-2£¬1ÊÇ·½³Ìx2+bx+c=xµÄÁ½¸ù£¬
¼´x2+£¨b-1£©x+c=0µÄÁ½¸ù£¬
Ôò-2+1=-1=-£¨b-1£©£¬-2•1=-2=c£¬
¼´b=2£¬c=-2£¬
Ôòf£¨x£©=x2+2x-2£¬
Áîf[f£¨x£©]=x4+4x3+2x2-4x-2=x£¬
¼´x4+4x3+2x2-5x-2=0£¬
ÓÉA⊆BµÃ£º-2£¬1ÊÇ·½³Ìx4+4x3+2x2-5x-2=0µÄÁ½¸ù£¬
Ôòx4+4x3+2x2-5x-2=£¨x+2£©£¨x-1£©£¨x2+3x+1£©=0£¬
ÓÉx2+3x+1=0Î޽⣬¿ÉµÃ£ºB={-2£¬1}£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢º¯ÊýÓë·½³ÌµÄ×ÛºÏÔËÓ㮽â´ð¸ÃÌâʱ£¬½èÓÃÁËÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽÓë¸ùÕâһ֪ʶµã£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an+1-an=2£¨n¡ÊN+£©£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×ãa1=2£¬b1=1£¬ÇÒ$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$£¨n¡Ý2£©£¬Èôcn=an+bn£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{cn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÊýÁÐ{cn}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®£¨1£©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=-3n2+2n£¬ÇóÆäͨÏʽ£»
£¨2£©ÊýÁÐ{an}µÄͨÏʽΪan=-2n+27£¬Sn´ïµ½×î´óֵʱ£¬ÇónµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{a}^{x}}{{a}^{x}+\sqrt{a}}$£®ÔòSn=f£¨0£©+f£¨$\frac{1}{n}$£©+f£¨$\frac{2}{n}$£©+¡­+f£¨$\frac{n-1}{n}$£©+f£¨1£©=$\frac{n+1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¸ßÒ»£¨2£©°à¹²ÓÐ54ÃûѧÉú²Î¼ÓÊýѧ¾ºÈü£¬ÏÖÒÑÓÐËûÃǵľºÈü·ÖÊý£¬ÇëÉè¼ÆÒ»¸ö½«¾ºÈü³É¼¨ÓÅÐãѧÉúµÄƽ¾ù·ÖÊä³öµÄËã·¨£¨¹æ¶¨90·ÖÒÔÉÏΪÓÅÐ㣩£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÕý·½ÐÎABCD£¬ÒÔA¡¢CΪ½¹µã£¬ÇÒ¹ýBµãµÄÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\frac{1+\sqrt{2}}{2}$C£®$\frac{\sqrt{2}}{2}$D£®$\frac{\sqrt{2}-1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=-2n2+n+2£¬
£¨1£©Çó{an}µÃͨÏʽ£»
£¨2£©ÅжÏ{an}ÊÇ·ñΪµÈ²îÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{3}{5}$£¬an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$£¬n¡ÊN*£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{1}{{a}_{n}}$-1}³ÉµÈ±ÈÊýÁУ»
£¨2£©ÉèÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°nÏîºÍΪTn£¬ÊÔÖ¤Ã÷£ºTn-n£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸