精英家教网 > 高中数学 > 题目详情
精英家教网如图,三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧面ABB1A1是菱形且垂直于底面,∠A1AB=60°,M是A1B1的中点.
(1)求证:BM⊥AC;
(2)求二面角B-B1C1-A1的正切值.
分析:(1)先根据ABB1A1是菱形,∠A1AB=60°得到△A1B1B是正三角形,则BM⊥A1B,然后根据平面ABB1A1与平面A1B1C1垂直的性质性质定理可知BM⊥平面A1B1C1,而AC∥A1C1,从而得到结论;
(2)根据题意可知BE⊥B1C1,根据二面角平面角的定义可知∠BEM为所求二面角的平面角,在△A1B1C1中,求出ME,在Rt△BMB1中,求出MB,最后在三角形BEM中求二面角的正切值.
解答:解:(1)证明:∵ABB1A1是菱形,∠A1AB=60°?△A1B1B是正三角形
又∵
M是 A1B1的中点
,∴ BM⊥A1B?BM⊥平面A1B1C1
∴BM⊥A1C1
又∵AC∥A1C1
?BM⊥AC
(2)
过M作ME⊥B1C1且交于点E
∵BM⊥平面A1B1C1
?BE⊥B1C1∴∠BEM为所求二面角的平面角
△A1B1C1中,ME=MB1•sin60°=
3
4
a
,Rt△BMB1中,MB=MB1•tan60°=
3
2
a
∴tan∠BEM=
MB
ME
=2,∴所求二面角的正切值是2
点评:本题主要考查了直线与平面垂直的判定,以及二面角的度量,求二面角,关键是构造出二面角的平面角,常用的方法有利用三垂线定理和通过求法向量的夹角,然后再将其转化为二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案