精英家教网 > 高中数学 > 题目详情
20.已知直线m,n与平面α、β,给出下列命题:其中正确的是(  )
A.若m∥α,n⊥β且α⊥β,则m∥nB.若m∥α,n⊥α,则m⊥n
C.若m∥α,n∥β且α∥β,则m∥nD.若α⊥β,α∩β=n,n⊥m⇒n⊥β

分析 对4个选项分别进行判断,即可得出结论.

解答 解:A.若m∥α,n⊥β且α⊥β,则m与n可以相交、平行或异面直线,故不正确;
B.若m∥α,n⊥α,则m⊥n,利用线面平行于垂直的性质即可判断出,正确.
C.若m∥α,n∥β且α∥β,则m与n可以平行、相交或异面直线,故不正确;
D.若α⊥β,α∩β=m,n⊥m,则n∥β或n?β或相交.
综上可知:只有B正确.
故选B.

点评 本题考查空间线面、面面位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数$y={log_a}({x^2}-5x-6)$,(0<a<1)的单调递减区间是(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=x2-mx+1在区间[1,2]上单调递增,则实数m的取值范围是(  )
A.(-∞,2]B.(-∞,2)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设命题p:方程x2+2ax+1=0有两个不相等的负根,命题q:不等式x2+2ax+2a≤0的解集为空集,若命题p∧q为假,命题p∨q为真,则a的取值范围为a≥2或0<a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)证明:当0<x<1时,(x-1)f(x)<lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-2xf′(-1),则f′(-1)=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线方程为y=4x2,则抛物线的焦点坐标为$({0,\frac{1}{16}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}x+1,x≤0\\{log_2}x,x>0\end{array}\right.$,则函数y=f[f(x)]-1的图象与x轴的交点个数为(  )
A.3个B.2个C.0个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.把曲线的极坐标方程$ρ=\sqrt{2}sin({\frac{π}{4}-θ})$化为曲线的标准方程为${({x-\frac{1}{2}})^2}+{({y+\frac{1}{2}})^2}=\frac{1}{2}$.

查看答案和解析>>

同步练习册答案