精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的单调区间;

2)当时,记函数,若函数至少有三个零点,求实数的取值范围

【答案】1)单调递增区间为;单调递减区间为;(2

【解析】

1)求导后,根据导函数的正负可确定函数的单调区间;

2)求得导函数的零点后,分别在三种情况下,根据函数的单调性和最值确定零点的个数,进而得到的范围.

1)令,则当时,

,令,解得:

时,;当时,

的单调递增区间为;单调递减区间为

2)当时,

,解得:

①当,即时,

此时至多有两个零点,不合题意;

②当,即时,,此时至多有两个零点,不合题意;

③当,即时,

i)当时,至多有两个零点,不合题意;

(ⅱ)当时,

此时恰好有个零点;

iii)当时,

,则

此时有四个零点;

综上所述:满足条件的实数的取值集合为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是双曲线的左、右焦点,点P上异于顶点的点,直线l分别与以为直径的圆相切于AB两点,若向量的夹角为,则=___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜率为的直线交抛物线两点,已知点的横坐标比点的横坐标大4,直线交线段于点,交抛物线于点

1)若点的横坐标等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆的左、右顶点分别为AB,右焦点为F,且点F满足,由椭圆C的四个顶点围成的四边形面积为.过点的直线TATB与此椭圆分别交于点,其中

1)求椭圆C的标准方程;

2)当T在直线时,直线MN是否过x轴上的一定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.

是否满意

组别

不满意

满意

合计

16

34

50

2

45

50

合计

21

79

100

1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;

2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?

附表:

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知设数列的前n项和为,且

1)求数列通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作圆的切线,已知分别为切点,直线恰好经过椭圆的右焦点和下顶点,则直线方程为___________;椭圆的标准方程是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥的顶点为,底面圆心为,半径为2,母线长为

1)求该圆锥的体积;

2)已知为圆锥底面的直径,为底面圆周上一点,且为线段的中点,求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人口平均预期寿命是综合反映人们健康水平的基本指标.年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.下图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是(

A.男性的平均预期寿命逐渐延长

B.女性的平均预期寿命逐渐延长

C.男性的平均预期寿命延长幅度略高于女性

D.女性的平均预期寿命延长幅度略高于男性

查看答案和解析>>

同步练习册答案