精英家教网 > 高中数学 > 题目详情

抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.
(1)求P(A),P(B),P(AB);
(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.

(1)         (2)

解析解:(1)①P(A)=.
②∵两个骰子的点数之和共有36个等可能的结果,点数之和大于8的结果共有10个.
∴P(B)=.
③当蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的结果有5个,故P(AB)=.
(2)由(1)知P(B|A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某计算机程序每运行一次都随机出现一个五位的二进制数A=,其中A的各位数中,a1=1,ak(k=2,3,4,5)出现0的概率为,出现1的概率为.记X=a1+a2+a3+a4+a5,当程序运行一次时,
(1)求X=3的概率;
(2)求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差V(Y1)、V(Y2);
(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人破译一密码,它们能破译的概率分别为,试求:
(1)两人都能破译的概率;
(2)两人都不能破译的概率;
(3)恰有一人能破译的概率;
(4)至多有一人能破译的概率;
(5)若要使破译的概率为99%,至少需要多少乙这样的人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某篮球运动员在最近几场大赛中罚球投篮的结果如下:

投篮次数n
8
10
12
9
10
16
进球次数m
6
8
9
7
7
12
进球频率m/n
 
 
 
 
 
 
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立.
(1)设该选手参赛的轮次为ξ,求ξ的分布列.
(2)对于(1)中的ξ,设“函数f(x)=3sinπ(x∈R)是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

同步练习册答案