精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)=的周期为

且对一切xR,都有f(x)

(1)求函数f(x)的表达式; 

(2)若g(x)=f(),求函数g(x)的单调增区间.

 

【答案】

(1) ,(2)g(x)的增区间为 

【解析】

试题分析:(1)∵,又周期 ∴, ∵对一切xR,都有f(x) 

 解得: 

的解析式为

(2)∵

∴g(x)的增区间是函数y=sin的减区间 

∴由得g(x)的增区间为 (等价于 

考点:本题考查了三角函数的解析式及性质

点评:求解三角函数的单调性、奇偶性、周期性、对称性问题,一般都要经过三角恒等变换,转化为y=Asin(ωx+Φ)型等,然后根据基本函数y=sinx等相关的性质进行求解

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案