精英家教网 > 高中数学 > 题目详情

如图所示,ABCD是正方形,平面ABCD,E,F是AC,PC的中点.

(1)求证:
(2)若,求三棱锥的体积.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以四棱锥为几何背景,考查线线平行、线线垂直、线面垂直、三棱锥的体积等数学知识,考查学生的空间想象能力、推理论证能力、转化能力和计算能力.第一问,因为是正方形,所以对角线互相垂直,在分别是中点,利用中位线,得,因为平面,∴平面,∴垂直面内的线,利用线面垂直的判断,得平面,所以得证;第二问,因为平面,所以显然是三棱锥的高,在正方形中求出的边长及面积,从而利用等体积法将转化为,利用三棱锥的体积公式计算.
试题解析:(1)连接

是正方形,的中点,
                       1分
又∵分别是的中点
∴                     2分
又∵平面, ∴平面,      3分
平面,  ∴                     4分
又∵  ∴平面            5分
又∵平面
                            6分
(2)∵平面,∴是三棱锥的高,
是正方形,的中点,∴是等腰直角三角形         8分
,故,                  10分
                           12分
考点:1.中位线;2.线面垂直的判断与性质;3.三棱锥的体积;4.等体积转换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个空间几何体的三视图如下左图所示,则该几何体的表面积为(   )

A.48 B.48+8 C.32+8 D.80 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,平面PAD⊥平面ABCDABDC,△PAD是等边三角形,已知AD=4,BD=4AB=2CD=8.

(1)设MPC上的一点,证明:平面MBD⊥平面PAD
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
(3)求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在体积为的圆锥中,已知的直径,的中点,是弦的中点.

(1)指出二面角的平面角,并求出它的大小;
(2)求异面直线所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱中,中点,中点.

(1)求三棱柱的体积;
(2)求证:
(3)求证:∥面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面,底面是平行四边形, 是 的中点。

(1)求证:
(2)求证:
(3)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形ABCD中,ABCDADABCD=2AB=4,ADECD的中点,将△BCE沿BE折起,使得CODE,其中垂足O在线段DE内.

(1)求证:CO⊥平面ABED
(2)问∠CEO(记为θ)多大时,三棱锥CAOE的体积最大,最大值为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.

⑴试用半径表示出储油灌的容积,并写出的范围.
⑵当圆柱高与半径的比为多少时,储油灌的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1= ,求三棱锥B1-A1DC的体积.

查看答案和解析>>

同步练习册答案