【题目】有120粒试验种子需要播种,现有两种方案:方案一:将120粒种子分种在40个坑内,每坑3粒;方案二:120粒种子分种在60个坑内,每坑2粒 如果每粒种子发芽的概率为0.5,并且,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(每个坑至多补种一次,且第二次补种的种子颗粒同第一次).假定每个坑第一次播种需要2元,补种1个坑需1元;每个成活的坑可收货100粒试验种子,每粒试验种子收益1元.
(1)用表示播种费用,分别求出两种方案的的数学期望;
(2)用表示收益,分别求出两种方案的收益的数学期望;
(3)如果在某块试验田对该种子进行试验,你认为应该选择哪种方案?
【答案】(1)答案见解析;(2)答案见解析;(3)方案二.
【解析】分析:(1)先确定播种费用随机变量,再计算对应概率,利用数学期望公式求期望,(2) 先确定收益随机变量,再计算对应概率,利用数学期望公式求期望,(3)根据纯利润的大小确定选择方案.
详解:
(1)方案一:用表示一个坑播种的费用,则可取2,3.
2 | 3 | |
∴ .
∴ 元.
方案二:用表示一个坑播种的费用,则可取2,3.
2 | 3 | |
∴ .
∴ 元.
(2)方案一:用表示一个坑的收益,则可取0,100.
0 | 100 | |
∴ .
∴ 元.
方案二:用表示一个坑的收益,则可取0,100.
0 | 100 | |
∴ .
∴ 元.
(3)方案二所需的播种费用比方案一多50元,但是收益比方案一多1687.5元,故应选择方案二.
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P-ABCD的底面是边长为2的菱形,∠BCD=60°,点E是BC边
的中点,AC,DE交于点O,,且PO⊥平面ABCD.
(1)求证:PD⊥BC;
(2)在线段AP上找一点F,使得BF∥平面PDE,并求此时四面体PDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数同时满足:⑴对于定义域上的任意,恒有; ⑵对于定义域上的任意,当时,恒有,则称函数为“理想函数”.给出下列四个函数中: ①,②, ③,④,能被称为“理想函数”的有_____________(填相应的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a=________,估计该小学学生身高的中位数为______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知与分别是边长为1与2的正三角形,,四边形为直角梯形,且,,点为的重心,为中点,平面,为线段上靠近点的三等分点.
(1)求证:平面;
(2)若二面角的余弦值为,试求异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,,底面是梯形,AB∥CD,,AB=PD=4,CD=2,,M为CD的中点,N为PB上一点,且.
(1)若MN∥平面PAD;
(2)若直线AN与平面PBC所成角的正弦值为,求异面直线AD与直线CN所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com