精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,且a2=-5,S5=-20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求使不等式Sn>an成立的n的最小值.
分析:(I)设{an}的公差为d,利用首项a1及公差d表示已知,解方程即可求解a1,d,进而可求通项公式
(II)利用等差数列的求和公式及通项公式代入已知,整理解不等式即可求解n的范围,可求
解答:解:(I)设{an}的公差为d,
依题意,有 a2=a1+d=-5,S5=5a1+10d=-20…(2分)
联立得
a1+d=-5
5a1+10d=-20

解得
a1=-6
d=1
…(5分)
所以an=-6+(n-1)•1=n-7…(7分)
(II)因为an=n-7,
所以Sn=
a1+an
2
n=
n(n-13)
2
…(9分)
n(n-13)
2
>n-7

即n2-15n+14>0…(11分)
解得n<1或n>14
又n∈N*,所以n>14
所以n的最小值为15…(13分)
点评:本题主要考查了等差数列的通项公式及求和公式的简单应用,一元二次不等式的求解,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案