精英家教网 > 高中数学 > 题目详情
在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是( )

A.
B.
C.
D.
【答案】分析:设这个圆柱的高为h,可得这个圆柱的体积V=π(-h3+R2h).利用导数研究函数的单调性,得V在(0,R)上是增函数,在(R,R)上是减函数,由此可得当h=R时,圆柱的体积的最大值是πR2
解答:解:设这个圆柱的高为h,底面半径为r,可得
h2+r2=R2,所以r=
∴这个圆柱的体积V=πr2h=π(-h3+R2h)
∵V'=π(-3h2+R2)=-3π(h+R)(h-R)
V'>0,得h<R; V'<0,得h>R
∴V在(0,R)上是增函数,在(R,R)上是减函数
因此,当h=R时,圆柱的体积的最大值Vmax=π[-(R)3+R2×R)=πR2
故选:A
点评:本题给出半球,求其内接圆柱的体积最大值,着重考查了球内接多面体、圆柱体积公式和利用导数研究函数的最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:

在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是(    )

A.πR3              B.πR3          C.πR3         D.πR3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都外国语学校高三(上)10月月考数学试卷(解析版) 题型:选择题

在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案