精英家教网 > 高中数学 > 题目详情

【题目】已知函数,满足,则(

A.函数2个极小值点和1个极大值点

B.函数2个极大值点和1个极小值点

C.函数有可能只有一个零点

D.有且只有一个实数,使得函数有两个零点

【答案】A

【解析】

,,由,方程有两个不等实数根,则设,可得出函数的单调性,从而可判断出答案.

所以

,由.

所以,因为二次函数的开口向上,对称轴方程为.

所以方程有两个不等实数根,则设.

则令可得.

可得.

所以函数上单调递减,在上单调递增,在上单调递减,在上单调递增.

又当时,

,所以

,所以

所以

根据单调性可知,函数2个极小值点和1个极大值点,所以选项A正确,B不正确.

根据函数的单调性,可画出函数的大致草图如下.

时,函数没有零点

时,函数有两个零点

时,函数有四个零点

时,函数有三个零点

时,函数有两个零点

由上可知选项C,D都不正确.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中.

1)根据散点图判断,哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程;

3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年是我国全面建成小康社会和十三五规划收官之年,也是佛山在经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走世界科技+佛山智造+全球市场的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量x)(件)与相应的生产总成本y(万元)的四组对照数据.

x

5

7

9

11

y

200

298

431

609

工厂研究人员建立了yx的两种回归模型,利用计算机算得近似结果如下:

模型①:

模型②:.

其中模型①的残差(实际值-预报值)图如图所示:

1)根据残差分析,判断哪一个模型更适宜作为y关于x的回归方程?并说明理由;

2)市场前景风云变幻,研究人员统计历年的销售数据得到每件产品的销售价格q(万元)是一个与产量x相关的随机变量,分布列为:

q

P

0.5

0.4

0.1

结合你对(1)的判断,当产量x为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中心在原点的椭圆E的一个焦点与抛物线的焦点关于直线对称,且椭圆E与坐标轴的一个交点坐标为.

1)求椭圆E的标准方程;

2)过点的直线l(直线的斜率k存在且不为0)交EAB两点,交x轴于点PA关于x轴的对称点为D,直线BDx轴于点Q.试探究是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C0b2)的离心率为F为椭圆的右焦点,PQ为过中心O的弦.

1)求面积的最大值;

2)动直线与椭圆交于AB两点,证明:在第一象限内存在定点M,使得当直线AM与直线BM的斜率均存在时,其斜率之和是与t无关的常数,并求出所有满足条件的定点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情后,为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额在万元至万元(包括万元和万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款(万元)随企业原纳税额(万元)的增加而增加;②补助款不低于原纳税额(万元)的.经测算政府决定采用函数模型(其中为参数)作为补助款发放方案.

1)判断使用参数是否满足条件,并说明理由;

2)求同时满足条件①、②的参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)表示中的最大值,若函数只有一个零点,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论上的单调性;

2)若,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的点按坐标变换,得到曲线轴负半轴的交点,经过点且倾斜角为的直线与曲线的另一个交点为,与曲线的交点分别为(点在第二象限).

(Ⅰ)写出曲线的普通方程及直线的参数方程;

(Ⅱ)求的值.

查看答案和解析>>

同步练习册答案