精英家教网 > 高中数学 > 题目详情
20.在三棱椎O-ABC中,OA=OB=OC=1,∠AOB=90°,OC⊥平面AOB,D为AB的中点,则OD与平面OBC的夹角为$\frac{π}{4}$.

分析 以O为原点,以OA为x轴,OB为y轴,OC为z轴,建立空间直角坐标系,利用向量法能求出OD与平面OBC的夹角.

解答 解:以O为原点,以OA为x轴,OB为y轴,OC为z轴,
建立空间直角坐标系,
则O(0,0,0),A(1,0,0),B(0,1,0),
D($\frac{1}{2},\frac{1}{2}$,0),C(0,0,1),
由题意得OB⊥OA,OA⊥OC,
∴$\overrightarrow{OA}$是平面BOC的法向量,
设OD与平面OBC的夹角为θ,
则sinθ=|cos<$\overrightarrow{OA},\overrightarrow{OD}$>|=$\frac{|\overrightarrow{OA}•\overrightarrow{OD}|}{|\overrightarrow{OA}|•|\overrightarrow{OD}|}$=$\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{2}}{2}$,
∴$θ=\frac{π}{4}$.
∴OD与平面OBC的夹角为$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题考查直线与平面的夹角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.比较大小:2$\sqrt{5}$>$\sqrt{3}$+$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.当圆C1:x2+y2-6x-6y+2=0与C2:x2+y2+2x-8=0相交于A,B.
(1)两圆交线AB所在的直线方程是4x+3y-5=0;
(2)过交点A,B的圆的方程可设为(x2+y2-6x-6y+2)+λ(x2+y2+2x-8)=0(λ∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{1}{sinC}$,且c=2.
(1)求ab的值;
(2)若△ABC的面积S=$\sqrt{3}$,求a2+b2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某开心农场要用一段长为40m的篱笆,围成一个矩形菜园ABCD,若设菜园的边长AB为xm,菜园的面积为ym2
(1)求y与x之间的函数关系式,写出x的取值范围;
(2)当x为何值时,菜园面积最大?并求出最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:
①设O,A,B,C是不共面的四点,则对空间任一点P,都存在一唯一的有序实数组x,y,z,使$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$;
②若{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,则{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$}也能构成空间的一个基底;
③给定$\overrightarrow{a}$,$\overrightarrow{b}$,若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则存在无穷多个向量使得它与$\overrightarrow{a}$,$\overrightarrow{b}$一起构成空间的一个基底;
④若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$不能构成空间的一个基底,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$中至少有两个向量共线.
其中正确的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.经过点P(-2,1)且与抛物线y2=4x只有一个公共点的直线的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数.
(1)求φ的值.
(2)若f(x)图象上的点关于M($\frac{3}{4}$π,0)对称.
①求ω满足的关系式;
②若f(x)在区间[0,$\frac{π}{2}$]上是单调函数,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的方程为$\left\{\begin{array}{l}{x=m+t}\\{y=t}\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$)
(1)把曲线C的方程化为直角坐标方程,并说明曲线C的形状;
(2)若曲线C上存在点P到直线l的距离为2$\sqrt{2}$,求实数m的取值范围.

查看答案和解析>>

同步练习册答案