【题目】已知曲线C的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)直线l与曲线C是否有公共点?并说明理由;
(2)若直线l与两坐标轴的交点为A,B,点P是曲线C上的一点,求△PAB的面积的最大值.
【答案】(1)没有交点,理由见详解;(2)3.
【解析】
(1)将曲线的参数方程化为普通方程,将直线的极坐标方程化为直角方程,联立方程组,根据的情况,求得两曲线的相交情况;
(2)由(1)中所求,容易得点的坐标,设点坐标为(3cosθ,sinθ),再将问题转化为三角函数值域的问题即可求得.
(1)曲线C的参数方程为(φ为参数),
转换为直角坐标方程为.
直线l的极坐标方程为,
整理得,
转换为直角坐标方程为x﹣y﹣6=0,
联立方程组
消去,可得10y2+12y+27=0,
由于△=122﹣4×10×27<0,所以直线与椭圆没有交点.
(2)直线的直角坐标方程为x﹣y﹣6=0,
与x轴的交点A(6,0)与y轴的交点坐标为B(0,6),
所以|AB|,
设椭圆上点P的坐标为(3cosθ,sinθ),
所以点P到直线l的距离d
,
当时,,
则3.
科目:高中数学 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)x3+ax2+bx,且f′(﹣1)=0.
(1)试用含a的代数式表示b;
(2)求f(x)的单调区间;
(3)令a=﹣1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,,),和是函数的图象与轴的2个相邻交点的横坐标,且当时,取得最大值2.
(1)求,,的值;
(2)将函数的图象上的每一点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,再将函数的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,椭圆的极坐标方程为.
(1)求直线的普通方程(写成一般式)和椭圆的直角坐标方程(写成标准方程);
(2)若直线与椭圆相交于,两点,且与轴相交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com