精英家教网 > 高中数学 > 题目详情
12.函数f(x)=-(x-5)|x|的单调递增区间是(0,$\frac{5}{2}$).

分析 对x进行分段讨论,取绝对值,利用二次函数的性质求解.

解答 解:函数f(x)=-(x-5)|x|,
当x≥0时,可得f(x)=-x2+5x,其对称轴x=$\frac{5}{2}$,在(0,$\frac{5}{2}$)是单调递增.
当x<0时,可得f(x)=x2-5x,其对称轴x=$\frac{5}{2}$,在(-∞,0)是单调递减.
∴函数f(x)=-(x-5)|x|的单调递增区间为(0,$\frac{5}{2}$).
故答案为(0,$\frac{5}{2}$).

点评 本题考查了绝对值的化简和单调性的讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某工厂每日生产某种产品x(x≥1)吨,当日生产的产品当日销售完毕,产品价格随产品产量而变化,当1≤x≤20时,每日的销售额y(单位:万元)与当日的产量x满足y=alnx+b,当日产量超过20吨时,销售额只能保持日产量20吨时的状况.已知日产量为2吨时销售额为4.5万元,日产量为4吨时销售额为8万元.
(1)把每日销售额y表示为日产量x的函数;
(2)若每日的生产成本$c(x)=\frac{1}{2}x+1$(单位:万元),当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.(注:计算时取ln2=0.7,ln5=1.6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sin(3π+α)=2sin$({\frac{3π}{2}+α})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)sin2α+sin 2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E,F分别是PA,PB的中点.
(1)求证:PB⊥平面CDF;
(2)已知点M是AD的中点,点N是AC上一动点,当$\frac{CN}{AC}$为何值时,平面PDN∥平面BEM?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的是(  )
A.若a2>b2,则a>bB.若ac>bc,则a>bC.若$\frac{1}{a}>\frac{1}{b},则a<b$D.若$\sqrt{a}<\sqrt{b},则a<b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x2-2x-3|-a满足下列条件,求a的取值范围.
(1)函数有两个零点;
(2)函数有四个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知平面ABC⊥平面BCDE,△DEF与△ABC分别是棱长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,DE∥BC,BC⊥CD,CD=1,点G为△ABC的重心,N为AB中点,$\overrightarrow{AM}=λ\overrightarrow{AF}(λ∈R,λ>0)$.
(1)当$λ=\frac{2}{3}$时,求证:GM∥平面DFN;
(2)若$λ=\frac{1}{2}$时,试求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$(1,\frac{{\sqrt{2}}}{2})$.
(1)求椭圆C的方程;
(2)动直线l与椭圆C有且只有一个公共点,问:在x轴上是否存在两个定点,它们到直线l的距离之积等于1?如果存在,求出这两个定点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,设点A,B的坐标分别为(-$\sqrt{3}$,0),($\sqrt{3}$,0),直线AP,BP相交于点P,且它们的斜率之积为-$\frac{2}{3}$.
(1)求P的轨迹方程;
(2)设点P的轨迹为C,点M、N是轨迹为C上不同于A,B的两点,且满足AP∥OM,BP∥ON,求证:△MON的面积为定值.

查看答案和解析>>

同步练习册答案