精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系内,点 在曲线,(为参数,)上运动,以为极轴建立极坐标系.直线的极坐标方程为.

()写出曲线的标准方程和直线的直角坐标方程;

()若直线与曲线相交于两点,点在曲线上移动,求面积的最大值.

【答案】()曲线的标准方程:;直线的直角坐标方程为:

()

【解析】

试题分析:()对于曲线,理平方关系消去参数即可;对于极坐标方程利用三角函数的和角公式后再化成直角坐标方程,再利用消去参数得到直线的直角坐标方程.

()欲求面积的最大值,由于一定,故只要求边上的高最大即可,根据平面几何的特征,当点在过圆心且垂直于的直线上时,距离最远,据此求面积的最大值即可.

试题解析:()消参数得曲线的标准方程:.题得,即直线的直角坐标方程为:.

()圆心到的距离为,则点的最大距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,∠B的平分线BN所在直线方程为x﹣2y﹣5=0.求:
(1)顶点B的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有4家直营店 ,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示根据此表,该公司获得最大总利润的运送方式有

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

时,求曲线在点处的切线方程;

求函数的单调区间;

若函数有最值,写出的取值范围.(只需写出结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,且.

1)求证:数列是等差数列;

2)若数列满足,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解心肺疾病是否与年龄相关,现随机抽取80名市民,得到数据如下表:

患心肺疾病

不患心肺疾病

合计

大于40岁

16

小于或等于40岁

12

合计

80

已知在全部的80人中随机抽取1人,抽到不患心肺疾病的概率为
下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.025的前提下认为患心肺疾病与年龄有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列 )中且对任意的

恒成立则称数列为“数列

(Ⅰ)若数列 为“数列”,写出所有可能的

(Ⅱ)若“数列 的最大值

(Ⅲ)设为给定的偶数对所有可能的数列

,其中表示 个数中最大的数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知Rt△ABC,∠ABC=90°,DAC的中点,⊙O经过ABD三点,CB的延长线交⊙O于点E,过点E作⊙O的切线,交AC的延长线于点F.在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变,但在这个变化过程中,有些线段总保持着相等的关系.

(1)连接图中已标明字母的某两点,得到一条新线段与线段CE相等,并说明理由;

(2)若CFCD,求sin F的值.

查看答案和解析>>

同步练习册答案