精英家教网 > 高中数学 > 题目详情

【题目】某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为,求的分布列和期望值;

(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?

附:

【答案】(1) (2) 没有充分证据判定爱好羽毛球运动与性别有关联.

【解析】试题分析:(1)的所有可能取值为,随机变量服从二项分布,运用独立重复试验公式求出概率后列出分布列,运用二项分布公式求的期望;(2)根据列联表,利用公式计算临界值,同临界值表进行比较,即可得到结论.

试题解析(1)任一学生爱好羽毛球的概率为,故

2

3

的分布列为

2

故没有充分证据判定爱好羽毛球运动与性别有关联.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图(N∈N*),那么输出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)研究函数的极值点;

(2)当时,若对任意的,恒有,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的极值;

2)若函数有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如下表:

(1)在图中画出表中数据的散点图;

(2)根据散点图选择合适的回归模型拟合的关系(不必说明理由);

(3)建立关于的回归方程,预测第5年的销售量.

附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

I)若,求曲线在点处的切线方程.

II)若,求函数的单调区间.

III)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C的顶点是原点O,以x轴为对称轴,且经过点P(1,2).

(1)求抛物线C的方程;

设点AB在抛物线C上,直线PAPB分别与y轴交于点MN,|PM|=|PN|.求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若函数既有一个极小值又有一个极大值,求的取值范围;

3)若存在,使得当时, 的值域是,求的取值范围.

查看答案和解析>>

同步练习册答案