精英家教网 > 高中数学 > 题目详情

【题目】某电信公司从所在地的1000名使用4G手机用户中,随机抽取了20名,对其收集每日使用流量(单位:M)进行统计,得到如下数据:

流量x

0≤x<5

5≤x<10

10≤x<15

15≤x<20

20≤x<25

x≥25

人数

1

6

6

5

2

0

(1)估计这20名4G手机用户每日使用流量(单位:M)的平均值;
(2)估计此地1000名使用4G手机用户中每日使用流量不少于10M用户数;
(3)在15≤x<20和20≤x<25两组用户中,随机抽取两人作进一步问卷调查,求所抽取的两人恰好来自不同组的概率.

【答案】解:(1)=(1×2.5+6×7.5+6×12.5+5×17.5+2×22.5)=12.75,
(2)20名4G手机用户每日使用流每日使用流量不少于10M用户数为20﹣1﹣6=13,
设1000名使用4G手机用户中每日使用流量不少于10M用户数为x,则=,解得x=650,
(3)设15≤x<20的5户分别记A,B,C,D,E,20≤x<25的2户分别记为a,b,随机抽取两人,共有21种,分别为AB,AC,AD,AE,Aa,Ab,BC,BD,BE,Ba,Bb,CD,CE,Ca.Cb,DE,Da,Db,Ea,Eb,ab,所抽取的两人恰好来自不同组有10种,分别为Aa,Ab,Ba,Bb,Ca.Cb,Da,Db,Ea,Eb.
故所抽取的两人恰好来自不同组的概率p=
【解析】(1)根据平均数的计算公式计算出平均数,即可估计这20名4G手机用户每日使用流量(单位:M)的平均值;
(2)设1000名使用4G手机用户中每日使用流量不少于10M用户数为x,则= , 解得x=650,问题得以解决;
(3)设15≤x<20的5户分别记A,B,C,D,E,20≤x<25的2户分别记为a,b,随机抽取两人,共有21种,所抽取的两人恰好来自不同组有10种,根据概率公式计算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(Ⅰ)证明:平面ACD⊥平面ABC;
(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,若分别是棱的中点,则必有( )

A.

B.

C. 平面平面

D. 平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处取得极值,求的值;

(Ⅱ)设,若函数在定义域上为单调增函数,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率.

(1)每次取出不放回;

(2)每次取出后放回.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P为平面ABCD外一点,且PB⊥BD.
(1)求证:PA⊥BD;
(2)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD;
(3)若PC⊥CD,PB=4,求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:

组别

频数

(Ⅰ)求所得样本的中位数(精确到百元);

(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该所大学共有学生人,试估计有多少位同学旅游费用支出在元以上;

(Ⅲ)已知样本数据中旅游费用支出在范围内的名学生中有名女生, 名男生,现想选其中名学生回访,记选出的男生人数为,求的分布列与数学期望.

附:若,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.

(1)求证:
(2)求∠PCE的大小.

查看答案和解析>>

同步练习册答案