精英家教网 > 高中数学 > 题目详情
11.已知$\frac{sin(α-β)}{cosαcosβ}$=tanα-tanβ,求$\frac{1}{cos0°cos1°}$+$\frac{1}{cos1°cos2°}$+…+$\frac{1}{cos88°cos89°}$的值.

分析 利用已知等式将所求$\frac{1}{cos0°cos1°}$+$\frac{1}{cos1°cos2°}$+…+$\frac{1}{cos88°cos89°}$化为$\frac{-1}{sin1°}$(tan0°-tan1°+tan1°-tan2°+tan2°-tan3°…+tan88°-tan89°)然后化简.

解答 解:由已知得到$\frac{1}{cos0°cos1°}$+$\frac{1}{cos1°cos2°}$+…+$\frac{1}{cos88°cos89°}$=$\frac{-1}{sin1°}$(tan0°-tan1°+tan1°-tan2°+tan2°-tan3°+…+tan88°-tan89°)
=$\frac{-1}{sin1°}$(-tan89°)
=-$\frac{-sin89°}{sin1°cos89°}$
=$\frac{cos1°}{sin{{\;}^{2}1}^{\;}°}$.

点评 本题考查了三角函数的化简变形,关键是利用已知的等式将所求转化为正切值的和差形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在数列{an},{bn}中,bn是an与an+1的等差中项,a1=3,且对任意x∈N*,都有4an+1-an=0,则数列{bn}的通项公式bn为$\frac{15}{8}•(\frac{1}{4})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合M={x|x2-4x+3<0且x2-6x+8<0},N={x|2x2-9x+a<0},若M∩N=M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合A={a1,a2,…,a11}内元素满足一下三个条件:
①ai>0(i=1,2,…,11);
②a1<a2<…<a11
③?ai∈A,唯一存在aj∈A使得aiaj=1(i,j=1,2,…,11)
则函数f(n)=(1+a1)(1-1a1)+(1+a2)(1-1a2)+…+(1+an)(1-1an)(n=1,…,11)值域内元素的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(n)=sin$\frac{n}{6}$π+tan$\frac{n}{4}$π,n∈{正奇数}.
(1)求f(3);
(2)设存在正数T,使f(n+T)=f(n),求T的最小值;
(3)求f(1)+f(3)+…+f(2015)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设log23=a,则log64=$\frac{2}{1+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知bcosC+ccosB=2b,
(1)求证:a=2b;
(2)若c=$\sqrt{3}$b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=0.8-0.7,b=0.8-0.9,c=1.1-0.8,则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.q求曲线C1:|$\frac{x}{4}$|-|$\frac{y}{2}$|=1与曲线C2:|$\frac{x}{8}$|+|$\frac{y}{2}$|=1所围成图形面积.

查看答案和解析>>

同步练习册答案