精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 ,过直线上任一点向抛物线引两条切线(切点为,且点轴上方).

(1)求证:直线过定点,并求出该定点;

(2)抛物线上是否存在点,使得

【答案】(1)证明见解析.

(2) 时,抛物线上存在点B;当时,抛物线上不存在点B

【解析】

(1)先求得直线直线再证明直线过定点.(2) 联立直线和抛物线的方程得到,代入,即得所以当时,抛物线上存在点B

时,抛物线上不存在点B

(1)设

时,,则,所以直线AT的方程为:

代入点,所以,又

所以,得,同理

所以直线,所以直线过定点

(2)因为直线过定点,故设

,所以

,因为,所以

所以

.又

所以,所以

所以.因为点B不在直线ST上,

所以.因为

所以当时,抛物线上存在点B

时,抛物线上不存在点B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是函数)的两个不同的零点,且适当排序后可构成等差数列,也可适当排序后构成等比数列,则________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n是一个三位正整数,若n的个位数字大于十位数字,十位数字大于百位数字,则称n三位递增数(如135256345等)

现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由123456组成的所有三位递增数中随机抽取1个数,且只抽取1次,若抽取的三位递增数是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.

1)由123456可组成多少三位递增数?并一一列举出来.

2)这种选取规则对甲乙两名学生公平吗?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的值域;

2)设 ,求函数的最小值

3)对(2)中的,若不等式对于任意的时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过抛物线的焦点且与此抛物线交于两点,,直线与抛物线交于两点,且两点在轴的两侧.

(1)证明:为定值;

(2)求直线的斜率的取值范围;

(3)若为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某学生在4月份开始进人冲刺复习至高考前的5次大型联考数学成绩(分);

(1)请画出上表数据的散点图;

(2)①请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;

②若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=,分数取整数)

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“绿水青山就是金山银山”。随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭。一段时间内,鸡蛋的价格起伏较大(不同周价格不同)。假设第一周、第二周鸡蛋的价格分别为元、元(单位:kg);甲、乙两人的购买方式不同:甲每周购买3kg鸡蛋,乙每周购买10元钱鸡蛋.

(Ⅰ)若,求甲、乙两周购买鸡蛋的平均价格;

(Ⅱ)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.

查看答案和解析>>

同步练习册答案