精英家教网 > 高中数学 > 题目详情

【题目】任意连结正六边形的6个顶点组成一条闭折线.求证当中必有两条边是平行的.

【答案】见解析

【解析】

代表六个顶点,

由图可见,两两连线的15条线段可以分为六类平行线:

(1),其下标满足

(2),其下标满足

(3),其下标满足

(4),其下标满足

(5),其下标满足

(6),其下标满足

由此可以得出两个结论:

结论1 两条线段的充要条件是

如图,有

结论2 六类平行线恰好对应着模6的六个剩余1,2,3,4,5,0.

由于封闭折线上的每一点都是两条线段的端点,因而其六条线段上各端点下标之和为

若封闭折线上的六条边分别取自上述六类(每类一条),

则其端点下标之和关于模6取遍1,2,3,4,5,0,有

这与①矛盾.所以,封闭折线上的六条边最多取自五类,至少有两条边属于同一类,这同一类的边就互相平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角三棱柱分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)若直线和平面所成角的正弦值等于求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个方格表.试求最小的正整数,使得可以在方格表中画出个矩形(其边在网格线上),且方格表中的每个小方格的边均包含在上述个矩形之一的边上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.

方案一:每满100元减20元;

方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)

红球个数

3

2

1

0

实际付款

7

8

9

原价

1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;

2)若某顾客购物金额为180元,选择哪种方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1998年,某地在抗洪抢险中接到预报,24小时后有一个超历史最高水位的洪峰到达,为保万无一失,指挥部决定在24小时内筑起一道堤坝作为第二防线.经计算,其工程量除动用现有军民连续奋战外,还需要20台大型翻斗车同时作业24小时.但是,除了第一辆车可以立即调入工作外,其余车辆需从各单位紧急抽调,每隔20分钟有一辆车到达投入作业,已知指挥部最多能组织到25辆车.问24小时内能否完成第二防线工程?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.

该公司将近天,每天揽件数量统计如下:

包裹件数范围

包裹件数

(近似处理)

天数

(1)某人打算将 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;

(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着一带一路倡议的推进,中国与沿线国家旅游合作越来越密切,中国到一带一路沿线国家的游客人也越来越多,如图是2013-2018年中国到一带一路沿线国家的游客人次情况,则下列说法正确的是(  )

①2013-2018年中国到一带一路沿线国家的游客人次逐年增加

②2013-2018年这6年中,2016年中国到一带一路沿线国家的游客人次增幅最小

③2016-2018年这3年中,中国到一带一路沿线国家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对本工厂工人的理论成绩与实践能力进行分析,决定从本工厂工人中随机抽取一个样本容量为7的样本进行分析.如果随机抽取的7名工人的理论成绩与实践能力值单位:分对应如下表:

工人序号i

1

2

3

4

5

6

7

理论成绩

60

65

70

75

85

87

90

实践能力值

70

77

80

85

90

86

93

1)求这7名工人的理论成绩与实践能力值的中位数、极差;

2)若规定85分以上包括85为优秀,从这7名工人中抽取3名工人,记3名工人中理论成绩和实践能力值均为优秀的人数为X,求X的分布列和期望;

3)根据下表数据,求实践能力值y关于理论成绩x的线性回归方程.系数精确到

附:线性回归方程中,

76

83

812

526

查看答案和解析>>

同步练习册答案