精英家教网 > 高中数学 > 题目详情
8.一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{8}{27}$D.$\frac{12}{27}$

分析 切割后共计43=64个正方体,两面红色的正方体数为棱数的2倍,有24个,由此能求出从中任取一个,则取到两面涂红色的小正方体的概率.

解答 解:一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,
切割后共计43=64个正方体
原来的正方体有8个角,12条棱,6个面
所以三面红色的正方体数等于角数,有8个,
两面红色的正方体数为棱数的2倍,有12×2=24个,
∴从中任取一个,则取到两面涂红色的小正方体的概率为:
p=$\frac{24}{64}=\frac{3}{8}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若f($\frac{1}{2}$)=0,△ABC的内角A满足f(cosA)<0,则A的取值范围是($\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,1个白球的概率;
(2)采用放回抽样,每次随机取一球,连续取5次,求恰有两次取到红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年12月1日,汉孝城际铁路正式通车运营.除始发站(汉口站)与终到站(孝感东站)外,目前沿途设有7个停靠站,其中,武汉市辖区内有4站(后湖站、金银潭站、天河机场站、天河街站),孝感市辖区内有3站(闵集站、毛陈站、槐荫站).为了了解该线路运营状况,交通管理部门计划从这7个车站中任选2站调研.
(1)求两个辖区各选1站的概率;
(2)求孝感市辖区内至少选中1个车站的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面内,复数${({1-\sqrt{2}i})^2}$对应的点P位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设Sn是数列的前n项和,已知a1=3,an+1=2Sn+3(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知角α为第四象限角,且$tanα=-\frac{4}{3}$
(1)求sinα+cosα的值;
(2)求$\frac{sin(π-α)+2cos(π+α)}{{sin(\frac{3}{2}π-α)-cos(\frac{3}{2}π+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是以$\frac{1}{2}$为公差的等差数列,数列{bn}的前n项和为Sn,满足bn=2sin(πan+φ),φ∈(0,$\frac{π}{2}$),则Sn不可能是(  )
A.-1B.0C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a≠0,函数f(x)=$\left\{\begin{array}{l}4{log_2}(-x),x<0\\|{{x^2}+ax}|,x≥0\end{array}$,若$f(f(-\sqrt{2}))=4$,则f(a)等于(  )
A.8B.4C.2D.1

查看答案和解析>>

同步练习册答案