精英家教网 > 高中数学 > 题目详情
如图,已知两圆C1 :(x-4 )2+y2=169 ,C2 :(x+4 )2+y2 =9 ,动圆在圆C1 内部且和圆C1 相内切,和圆C2 相外切,求动圆圆心的轨迹方程
解:设动圆圆心M(x ,y) ,半径为r ,
由题意动圆M 内切于圆C1 ,圆M 外切于圆C2 ,    
∴|MC1|=13-r, |MC2|=3+r,    
∴|MC1|+|MC2|=16 ,    
∴动圆圆心M 的轨迹是以C1 、C2 为焦点的椭圆,    
且2a=16 ,2c=8 ,    b2=a2-c2=64-16=48 .
故所求动圆圆心的轨迹方程为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知双曲线C1
y2
m
-
x2
n
=1(m>0,n>0),圆C2:(x-2)2+y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线y=x对称,设斜率为k的直线l过点C2
(1)求双曲线C1的方程;
(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下面两题中任选一题作答,如果都做,则按所做第1题评分)
(1)(坐标系与参数方程选做题)
曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上的点到曲线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)
上的点的最短距离为
1
1

(2)(几何证明选讲选做题)
如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=1,则AD的长为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设椭圆C1数学公式与双曲线C2数学公式有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为数学公式.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值;
(3)由抛物线弧E1:y2=4x(0数学公式)与第(1)小题椭圆弧E2数学公式数学公式)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求数学公式的取值范围.

查看答案和解析>>

同步练习册答案