精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,圆心为坐标原点的单位圆OC的内部,且与C有且仅有两个公共点,直线C只有一个公共点.

1)求C的标准方程;

2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线lC交于AB两点,且弦AB的中垂线交x轴于点P,试求的面积的最大值.

【答案】1;(2

【解析】

(1)根据单位圆OC的内部,且与C有且仅有两个公共点可得,再联立C求得二次方程令判别式等于0即可求得.

(2) 由题意设直线l的方程为,联立直线l与椭圆的方程,再利用韦达定理与面积公式求得关于的面积的表达式,最后利用换元求导分析函数的最值即可.

解:(1)依题意,得

代入椭圆的方程,得

,解得

所以椭圆的标准方程为

2)由(1)可得左焦点

由题意设直线l的方程为,

代入椭圆方程,得

,则

所以,AB的中点为

设点,则,解得

,则,且

,则

所以,即的面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,直线相交于点,且它们的斜率之积是.

1)求点的轨迹的方程;

2)过点的直线与轨迹交于点,与交于点,过的垂直线交轴于点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数恰有两个极值点,则实数的取值范围是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

1)求曲线C的方程;

2)设不经过点的直线l与曲线C相交于AB两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线方程为 (p0)M为直线上任意一点,过M引抛物线的切线,切点分别为AB.

1)求直线AB轴的交点坐标;

2)若E为抛物线弧AB上的动点,抛物线在E点处的切线与三角形MAB的边MAMB分别交于点,记,问是否为定值?若是求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,要使函数恰有一个零点,则实数的取值范围是( ).

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具价值的城市品牌,作为普通市民,既是城市文明的最大受益者,更是文明城市的主要创造者,皖北某市为提高市民对文明城市创建的认识,举办了创建文明城市知识竞赛,从所有答卷中随机抽取400份试卷作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图所示的频率分布直方图.

(Ⅰ)求样本的平均数;

(Ⅱ)现从该样本成绩在两个分数段内的市民中按分层抽样选取6人,求从这6人中随机选取2人,且2人的竞赛成绩之差的绝对值大于20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的右焦点为,离心率为.直线过点且不平行于坐标轴,有两个交点,线段的中点为.

1)求椭圆的方程;

2)证明:直线的斜率与的斜率的乘积为定值;

3)延长线段与椭圆交于点,若四边形为平行四边形,求此时直线的斜率.

查看答案和解析>>

同步练习册答案