分析 由题意可得圆的圆心和半径,可得标准方程,化为一般式可得.
解答 解:由题意可得圆x2+y2-3x+5y-1=0的圆心为($\frac{3}{2}$,-$\frac{5}{2}$),
∴所求圆的圆心为($\frac{3}{2}$,-$\frac{5}{2}$),
∵所求圆过点M(1,2),
∴半径为r=$\sqrt{(\frac{3}{2}-1)^{2}+(-\frac{5}{2}-2)^{2}}$=$\frac{\sqrt{82}}{2}$,
∴所求圆的标准方程为(x-1)2+(y-2)2=$\frac{41}{2}$,
整理为一般式可得x2+y2-2x-4y-$\frac{31}{2}$=0
故答案为:x2+y2-2x-4y-$\frac{31}{2}$=0
点评 本题考查圆的方程的求解,涉及两点间的距离公式,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y-3=2(x-2) | B. | y+3=2(x-2) | C. | y-2=k(x+3) | D. | y-2=2(x-3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com