精英家教网 > 高中数学 > 题目详情
已知有相同两焦点F1、F2的椭圆和双曲线,P是它们的一个交点,则△F1PF2的形状是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.随m,n变化而变化
【答案】分析:利用椭圆、双曲线的定义确定焦半径之间的关系,再利用两曲线有相同的焦点,确定m,n的关系,从而可确定△F1PF2的形状.
解答:解:由题意,不妨设P是双曲线右支上的一点,|PF1|=x,|PF2|=y,则x+y=2,x-y=2
∴x2+y2=2(m+n)
∵两曲线有相同的焦点
∴m-1=n+1
∴m=n+2
∴x2+y2=4(n+1)
即|PF1|2+|PF2|2=|F1F2|2
∴△F1PF2是直角三角形
故选B.
点评:本题考查椭圆、双曲线的定义及几何性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1
和双曲线
x2
3
-y2=1
,P是它们的一个交点,则△F1PF2的形状是(  )
A、锐角三角形
B、B直角三角形
C、钝有三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)已知有相同两焦点F1、F2的椭圆
x2
m
+y2=1(m>1)
和双曲线
x2
n
-y2=1(n>0)
,P是它们的一个交点,则△F1PF2的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1和双曲线
x2
3
-y2=1,P是它们的一个交点,则△F1PF2的面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
m
+y2=1(m>1)
和双曲线
x2
n
-y2=1(n>0)
,点P是它们的一个交点,则△F1PF2面积的大小是(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省高三上学期期末质量检测数学 题型:选择题

(理)已知有相同两焦点F1、F2的椭圆 + y2=1(m>1)和双曲线 - y2=1(n>0),P是它们的一个交点,则ΔF1PF2的形状是(    )

A.锐角三角形     B.直角三角形     C.钝有三角形    D.随m、n变化而变化

 

查看答案和解析>>

同步练习册答案