精英家教网 > 高中数学 > 题目详情

(06年江苏卷)(14分)

设数列满足:(n=1,2,3,…),证明为等差数列的充分必要条件是为等差数列且(n=1,2,3,…)

解析:证明:必要性,设是{an}公差为d1的等差数列,则

bn+1bn=(an+1an+3) (anan+2)= (an+1an) (an+3an+2)= d1 d1=0

所以bnbn+1  ( n=1,2,3,…)成立。

又cn+1cn=(an+1an)+2 (an+2an+1)+3 (an+3an+2)= d1+2 d1 +3d1 =6d1(常数) ( n=1,2,3,…)

所以数列{cn}为等差数列。

充分性: 设数列{cn}是公差为d2的等差数列,且bnbn+1  ( n=1,2,3,…)

∵cn=an+2an+1+3an+2                                       ①

∴cn+2=an+2+2an+3+3an+4                                                              

①-②得cncn+2=(anan+2)+2 (an+1an+3)+3 (an+2an+4)=bn+2bn+1+3bn+2

∵cncn+2=( cncn+1)+( cn+1cn+2)= 2 d2                       

∴bn+2bn+1+3bn+2=2 d2                                                           

从而有bn+1+2bn+2+3bn+3=2 d2                                              

④-③得(bn+1bn)+2 (bn+2bn+1)+3 (bn+3bn+2)=0               ⑤

∵bn+1bn≥0,            bn+2bn+1≥0 ,          bn+3bn+2≥0,

∴由⑤得bn+1bn=0  ( n=1,2,3,…),

由此不妨设bn=d3 ( n=1,2,3,…)则anan+2= d3(常数).

由此cn=an+2an+1+3an+2= cn=4an+2an+13d3

从而cn+1=4an+1+2an+25d

两式相减得cn+1cn=2( an+1an) 2d3

因此(常数) ( n=1,2,3,…)

所以数列{an}公差等差数列。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年江苏卷)(14分)

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且

其中A,B为常数.

(Ⅰ)求A与B的值;

(Ⅱ)证明数列{an}为等差数列;

(Ⅲ)证明不等式对任何正整数m、n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年江苏卷)设a、b、c是互不相等的正数,则下列等式中不恒成立的是

(A)   (B)

(C)     (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年江苏卷)设变量x、y满足约束条件,则的最大值为  ▲

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年江苏卷)(16分)

设a为实数,设函数的最大值为g(a)。

   (Ⅰ)设t=,求t的取值范围,并把f(x)表示为t的函数m(t)

(Ⅱ)求g(a)

(Ⅲ)试求满足的所有实数a

查看答案和解析>>

同步练习册答案