精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\sqrt{9-x^2}+\frac{1}{{\sqrt{x+2}}}$的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求a的取值范围;
(2)若全集U={x|x≤4},a=-1,求∁UA及A∩(∁UB).

分析 (1)首先求出集合A,根据A⊆B,利用子集的概念,考虑集合端点值列式求得a的范围;
(2)直接运用补集及交集的概念进行求解.

解答 解:(1)要使函数f(x)=$\sqrt{9-x^2}+\frac{1}{{\sqrt{x+2}}}$有意义,则$\left\{\begin{array}{l}{9-{x}^{2}≥0}\\{x+2>0}\end{array}\right.$,解得:-2<x≤3.
所以,A={x|-2<x≤3}.
又因为B={x|x<a},要使A⊆B,则a>3.

(2)因为U={x|x≤4},A={x|-2<x≤3},所以CUA={x|x≤-2或3<x≤4}.
又因为a=-1,所以B={x|x<-1}.
所以CUB={-1≤x≤4},所以,A∩(CUB)=A={x|-2<x≤3}∩{-1≤x≤4}={x|-1≤x≤3}.

点评 本题考查了函数的定义域及其求法,考查了交集和补集的混合运算,求解集合的运算时,利用数轴分析能起到事半功倍的效果,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若等差数列{an}中,a1-a8-a12=3,a15-a4=-1,则a3+a13=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆x2+y2+2x+4y-3=0上到直线x+y+4=0的距离为$\sqrt{2}$的点的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},则(∁UA)∩(∁UB)={x|x<-3或x>4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={2,5},B={x|x2+px+q=0,x∈R}
(1)若B={5},求p,q的值;
(2)若A∩B=B,求实数p,q满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x∈Z|$\frac{x+3}{x-2}$≤0},B={x∈R|x2≥-2x},则A∩B=(  )
A.{-3,-2,0,1}B.{-3,-2,0,1,2}C.[-3,-2]∪[0,2)D.[-3,-2]∪[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=ax2+bx+c的图象经过点(0,1),f(x-2)是偶函数.函数f(x)的图象与直线y=2x相切,且切点位于第一象限.
(1)求函数f(x)的解析式;
(2)若对一切x∈[-1,1],不等式f(x+t)<f($\frac{x}{2}$)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=$\frac{1}{2}$,sinB=$\frac{\sqrt{3}}{2}$,求a:b:c.

查看答案和解析>>

同步练习册答案