精英家教网 > 高中数学 > 题目详情

已知函数f(x)=loga(8-ax)
(1)若f(x)<2,求实数x的取值范围;
(2)若f(x)>1在区间[1,2]上恒成立,求实数a的取值范围.

解:(1)若a>1时,0<8-ax<a2(4分)
若0<a<1时,8-ax>a2(4分)
(2)若a>1时,8-ax>a在x∈[1,2]上恒成立,
在x∈[1,2]上恒成立,
,即,则;(3分)
若0<a<1时,0<8-ax<a在x∈[1,2]上恒成立,即在x∈[1,2]上恒成立,
,即a>4,则a∈?.(3分)
综上所述:.(1分)
分析:(1)由f(x)<2得loga(8-ax)<2,由于函数的底数是a故应对它进行分类,按函数是增函数与减函数解不等式得到实数x的取值范围;
(2)对于f(x)>1在区间[1,2]上恒成立,故应确定出函数在区间上的最小值,令最小值大于1,得到关于参数的不等式,解出实数a的取值范围.
点评:本题考查对数函数的单调性与特殊点,解题的关键正确的根据对数的单调性解不等式或者转化出关于参数的不等式,两个小题求解过程中都用到了对数的单调性,当参数的取值范围对所研究的问题有不确定性时常对参数的取值范围进行讨论从而这不确定为确定
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案