精英家教网 > 高中数学 > 题目详情

【题目】给定一个项的实数列 ,任意选取一个实数,变换将数列 变换为数列 ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数可以不相同,第次变换记为,其中为第次变换时所选择的实数.如果通过次变换后,数列中的各项均为,则称 为“次归零变换”.

)对数列 ,给出一个“次归零变换”,其中

)对数列 ,给出一个“次归零变换”,其中

)证明:对任意项的实数列,都存在“次归零变换”.

【答案】(1)见解析;(2)见解析;(3)见解析

【解析】试题分析:1)根据新定义,计算经变换 ,可得结论;2计算经变换 可得结论;(3记经过变换后,数列为 ,继续做类似的变换,取,( ,经后,得到数列的前项相等,再取,经后,即可得到结论;

试题解析:

)证明:经过次变换后,数列记为

,则,即经后,前两项相等;

,则

即经后,前三项相等;

设进行变换时, ,变换后数列变为

那么,进行第次变换时,取

则变换后数列变为:

显然有

经过次变换后,显然有

最后,取,经过变换后,数列各项均为

所以对任意数列,都存在次归零变换

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形CDEF是正方形,四边形ABCD为直角梯形,∠ADC90°ABDC,平面CDEF⊥平面ABCDABADCDaMFB上,且BD∥平面ECM

1)求证:MBF中点;

2)求证:平面BCF⊥平面EMC

3)求直线CD与平面ECM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,a1=2,a3+2a2a4的等差中项.

(1)求数列的通项公式;

(2)log2,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是坐标原点,设函数的图象为直线,且轴、轴分别交于两点,给出下列四个命题:

存在正实数,使的面积为的直线仅有一条;

存在正实数,使的面积为的直线仅有二条;

存在正实数,使的面积为的直线仅有三条;

存在正实数,使的面积为的直线仅有四条.

其中,所有真命题的序号是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是以为直径的圆上一段圆弧,是以为直径的圆上一段圆弧,是以为直径的圆上一段圆弧,三段弧构成曲线.则下面说法正确的是( )

A.曲线轴围成的面积等于

B.的公切线方程为:

C.所在圆与所在圆的交点弦方程为:

D.用直线所在的圆,所得的弦长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角成等差数列,且所对的边分别为,则有下列四个命题:

②若成等比数列,则为等边三角形;

③若,则为锐角三角形;

④若,则.

则以上命题中正确的有________________.( 把所有正确的命题序号都填在横线上 ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下对各事件发生的概率判断正确的是(

A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是

B.1名男同学和2名女同学中任选2人参加社区服务,则选中一男一女同学的概率为

C.将一个质地均匀的正方体骰子(每个面上分别写有数字123456)先后抛掷2次,观察向上的点数,则点数之和是6的概率是

D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:

超过1小时

不超过1小时

20

8

12

m

(Ⅰ)求

(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:.

查看答案和解析>>

同步练习册答案