精英家教网 > 高中数学 > 题目详情
12.BD是等腰直角三角形△ABC腰AC上的中线,AM⊥BD于点M,延长AM交BC于点N,AF⊥BC于点F,AF与BD交于点E.
(1)求证;△ABE≌△ACN;
(2)求证:∠ADB=∠CDN.

分析 (1)通过证明∠BAE=∠C,AB=AC,∠ABD=∠NAC,即可判定△ABE≌△ACN.
(2)由AE=NC,AD=CD,∠EAD=∠C,可证明△ADE≌△CDN,利用全等三角形的性质即可证明∠ADB=∠CDN.

解答 (本题满分为10分)
证明:(1)∠BAE=∠C=45°,
AB=AC,
∠ABD=∠NAC(∠ADB的余角),
∴△ABE≌△ACN.…(5分)
(2)由(1)可得AE=NC,
AD=CD,∠EAD=∠C=45°,
∴△ADE≌△CDN,
∴∠ADB=∠CDN.…(10分)

点评 本题主要考查了全等三角形的判定和性质的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.曲线y=e-x在点(x0,$\frac{1}{e}$)处的切线与坐标轴围成的三角形的面积为$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼
的时间(分钟)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
总人数203644504010
将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(Ⅰ)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
20110
合计
(Ⅱ)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\frac{1}{2}$x2-9lnx在区间[a-$\frac{1}{2}$,a+$\frac{1}{2}$]上单调递减,则实数a的取值范围是($\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′-ABFE
(Ⅰ)求证:AB⊥平面AEC′;
(Ⅱ)当四棱锥C′-ABFE体积取最大值时,
(i)若G为BC′中点,求异面直线GF与AC′所成角;
(ii)在C′-ABFE中AE交BF于C,求二面角A-CC′-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位长度后,再将得到的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的两个数列{an}和{bn}满足:an+1=$\frac{{a}_{n}+{b}_{n}}{\sqrt{{a}_{n}^{2}+{b}_{n}^{2}}}$,bn+1=1+$\frac{{b}_{n}}{{a}_{n}}$,n∈N*
(1)求证:数列{($\frac{{b}_{n}}{{a}_{n}}$)2}是等差数列;
(2)若a1=b1=1令($\frac{{b}_{n}}{{a}_{n}}$)2=$\frac{1}{{c}_{n}}$,若Sn=C1C2+C2C3+…+CnCn+1,求Sn
(3)在(2)的条件下,设dn=$\frac{3-{S}_{n-1}}{1-\sqrt{11}(1-{S}_{n-1})}$,若dn≤2m-1,对于任意的n∈N+恒成立,求正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,且β⊥α,则下列结论一定正确的是(  )
A.m⊥nB.m∥nC.m与n相交D.m与n异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.分子为1且分母为正整数的分数称为单位分数.1可以分拆为若干个不同的单位分数之和:
1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
…,
依此类推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中,m、n∈N*,则mn=(  )
A.228B.240C.260D.273

查看答案和解析>>

同步练习册答案