分析 (1)通过证明∠BAE=∠C,AB=AC,∠ABD=∠NAC,即可判定△ABE≌△ACN.
(2)由AE=NC,AD=CD,∠EAD=∠C,可证明△ADE≌△CDN,利用全等三角形的性质即可证明∠ADB=∠CDN.
解答 (本题满分为10分)
证明:(1)∠BAE=∠C=45°,
AB=AC,
∠ABD=∠NAC(∠ADB的余角),
∴△ABE≌△ACN.…(5分)
(2)由(1)可得AE=NC,
AD=CD,∠EAD=∠C=45°,
∴△ADE≌△CDN,
∴∠ADB=∠CDN.…(10分)
点评 本题主要考查了全等三角形的判定和性质的应用,考查了转化思想和数形结合思想的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
平均每天锻炼 的时间(分钟) | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m⊥n | B. | m∥n | C. | m与n相交 | D. | m与n异面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 228 | B. | 240 | C. | 260 | D. | 273 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com