精英家教网 > 高中数学 > 题目详情
已知,则=_      _____
6-2 

试题分析:因为=,所以=6-2
点评:简单题,利用定义法或换元法先求得解析式,再求函数值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知,则     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)对定义域分别是的函数
规定:函数
已知函数
(1)求函数的解析式;
⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知是定义在(0,+∞)上的增函数,且满足 , 
(1)求证:=1    (2) 求不等式的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断:
①若P∩M=,则f(P)∩f(M)=
②若P∩M≠,则f(P)∩f(M) ≠
③若P∪M=R,则f(P)∪f(M)=R;
④若P∪M≠R,则f(P)∪f(M)≠R.
其中正确判断有(     )
A  0个        B  1个       C  2个       D  4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

时,,则的取值范围         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证: 当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,若R
恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数对任意都有,若的图象关于直线对称,且,则 
A.2B.3C.4D.0

查看答案和解析>>

同步练习册答案