【题目】已知 的圆心为 的圆心为N,一动圆与圆M内切,与圆N外切.
(1)求动圆圆心P的轨方迹方程;
(2)设A,B分别为曲线P与x轴的左右两个交点,过点 的直线 与曲线P交于C,D两点,若 ,求直线 的方程.
【答案】
(1)解:设动圆P的半径为r,则 两式相,得 ,由椭圆定义知,点 的轨迹是以 为焦点,焦距为2实轴长为4的椭圆,其方程为 .
(2)解:当直线的斜率不存在时,直线l的方程为x=1,则 ,则 ,当直线的斜率存在时,设直线 的方程为 ,设 ,朕立 ,消去y得 ,则有 ,
.由已知,得 ,解得 .故直线 的方程为 .
【解析】(1)由题意结合椭圆的定义可知,点P的轨迹是以M、N为焦点,焦距为2实轴长为4的椭圆,结合已知条件即可求出动圆圆心P的轨迹方程。(2)由题意分情况讨论:当直线斜率不存在时由已知可得不成立。当直线的斜率存在时利用点斜式设出直线的方程,联立直线和椭圆的方程消去y得到关于x 的一元二次方程,借助韦达定理求出 x1 + x2、x1x2的解析式,根据向量的数量积运算公式整理已知的式子转化为关于k的方程,解出k的值即可然后再利用斜截式求出直线的方程。
科目:高中数学 来源: 题型:
【题目】设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,
且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项;
(2)令,n=1,2,…,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2: (θ为参数).
(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;
(Ⅱ)极坐标系中两点A(ρ1 , θ0),B(ρ2 , θ0+ )都在曲线C1上,求 + 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准 (吨),一位居民的月用水量不超过 的部分按平价收费,超出 的部分按议价收费,为了了解居民用水情况,通过抽祥,获得了某年100位居民毎人的月均用水量(单位:吨),将数据按照 分成 组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于 吨的人数,并说明理由;
(3)若该市政府希望使80%的居民每月的用水量不超过标准 (吨),估计x的值(精确到0.01),并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)将函数f(x)的图象向右平移 个单位长度后得到函数g(x)的图象,求函数g(x)在区间 上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某奶茶店对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:
价格 | 5 | 5.5 | 6.5 | 7 |
销售量 | 12 | 10 | 6 | 4 |
通过分析,发现销售量对奶茶的价格具有线性相关关系.
(1)求销售量对奶茶的价格的回归直线方程;
(2)欲使销售量为13杯,则价格应定为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年一交警统计了某路段过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:
车速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次数y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;
(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测在2016年该路段路况及相关安全设施等不变的情况下,车速达到110km/h时,可能发生的交通事故次数.
(附:b=,=-,其中,为样本平均值)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com