精英家教网 > 高中数学 > 题目详情

【题目】已知 的圆心为 的圆心为N,一动圆与圆M内切,与圆N外切.
(1)求动圆圆心P的轨方迹方程;
(2)设A,B分别为曲线P与x轴的左右两个交点,过点 的直线 与曲线P交于C,D两点,若 ,求直线 的方程.

【答案】
(1)解:设动圆P的半径为r,则 两式相,得 ,由椭圆定义知,点 的轨迹是以 为焦点,焦距为2实轴长为4的椭圆,其方程为 .
(2)解:当直线的斜率不存在时,直线l的方程为x=1,则 ,则 ,当直线的斜率存在时,设直线 的方程为 ,设 ,朕立 ,消去y得 ,则有

.由已知,得 ,解得 .故直线 的方程为 .


【解析】(1)由题意结合椭圆的定义可知,点P的轨迹是以M、N为焦点,焦距为2实轴长为4的椭圆,结合已知条件即可求出动圆圆心P的轨迹方程。(2)由题意分情况讨论:当直线斜率不存在时由已知可得不成立。当直线的斜率存在时利用点斜式设出直线的方程,联立直线和椭圆的方程消去y得到关于x 的一元二次方程,借助韦达定理求出 x1 + x2、x1x2的解析式,根据向量的数量积运算公式整理已知的式子转化为关于k的方程,解出k的值即可然后再利用斜截式求出直线的方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S37

a133a2a34构成等差数列.

(1)求数列{an}的通项;

(2)n12,求数列{bn}的前n项和Tn .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2 (θ为参数).
(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;
(Ⅱ)极坐标系中两点A(ρ1 , θ0),B(ρ2 , θ0+ )都在曲线C1上,求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准 (吨),一位居民的月用水量不超过 的部分按平价收费,超出 的部分按议价收费,为了了解居民用水情况,通过抽祥,获得了某年100位居民毎人的月均用水量(单位:吨),将数据按照 分成 组,制成了如图所示的频率分布直方图.

(1)求直方图中a的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于 吨的人数,并说明理由;
(3)若该市政府希望使80%的居民每月的用水量不超过标准 (吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)sinxsin xcos2x.

(1)f(x)的最小正周期和最大值;

(2)讨论f(x)在()上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(-2,0),B(0,1),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)将函数f(x)的图象向右平移 个单位长度后得到函数g(x)的图象,求函数g(x)在区间 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某奶茶店对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:

价格

5

5.5

6.5

7

销售量

12

10

6

4

通过分析,发现销售量对奶茶的价格具有线性相关关系.

(1)求销售量对奶茶的价格的回归直线方程;

(2)欲使销售量为13杯,则价格应定为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年一交警统计了某路段过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:

车速x(km/h)

60

70

80

90

100

事故次数y

1

3

6

9

11

(Ⅰ)请画出上表数据的散点图;

(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;

(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测在2016年该路段路况及相关安全设施等不变的情况下,车速达到110km/h时,可能发生的交通事故次数.

(附:b=,=-,其中,为样本平均值)

查看答案和解析>>

同步练习册答案