(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(文)已知椭圆的一个焦点为
,点
在椭圆
上,点
满足
(其中
为坐标原点), 过点
作一斜率为
的直线交椭圆于
、
两点(其中
点在
轴上方,
点在
轴下方) .
(1)求椭圆的方程;
(2)若,求
的面积;
(3)设点为点
关于
轴的对称点,判断
与
的位置关系,并说明理由.
(1)(2)
(3)
与
共线,设出点的坐标,用向量的坐标运算即可证明.
解析试题分析:(1)由,得 ……2分
解得a2=2,b2=1,
所以,椭圆方程为. ……4分
(2)设PQ:y=x-1,
由得3y2+2y-1=0, ……6分
解得: P(),Q(0,-1),
由条件可知点,
所以=
|FT||y1-y2|=
. ……10分
(3) 判断:与
共线. ……11分
设
则(x1,-y1),
=(x2-x1,y2+y1),
=(x2-2,y2), ……12分
由得
. ……13分
(x2-x1)y2-(x2-2)(y1+y2)=(x2-x1)k(x2-1)-(x2-2)(kx1-k+kx2-k)
=3k(x1+x2)-2kx1x2-4k=3k-2k
-4k
=k()=0. ……15分
所以,与
共线. ……16分
考点:本小题主要考查椭圆标准方程的求解、直线与椭圆的位置关系的判定和应用以及向量共线的坐标运算的应用,考查学生的运算求解能力和思维的严密性.
点评:高考中圆锥曲线的题目一般难度较大,而且一般运算量较大,要仔细运算,更要结合图形数形结合简化求解过程.
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆的离心率为
,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为
.
(1)求抛物线的方程;
(2)求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线,过其焦点F的直线交抛物线于
、
两点。过
、
作准线的垂线,垂足分别为
、
.
(1)求出抛物线的通径,证明和
都是定值,并求出这个定值;
(2)证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图所示,椭圆C: 的离心率
,左焦点为
右焦点为
,短轴两个端点为
.与
轴不垂直的直线
与椭圆C交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.
(1)求椭圆 的方程;
(2)求证直线 与
轴相交于定点,并求出定点坐标.
(3)当弦 的中点
落在
内(包括边界)时,求直线
的斜率的取值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆
的“准圆”上的一个动点,过动点
作直线
使得
与椭圆
都只有一个交点,且
分别交其“准圆”于点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的对称轴为坐标轴,焦点在
轴上,离心率
,
分别为椭圆的上顶点和右顶点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆
相交于
两点,且
(其中
为坐标原点),求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为
,其中左焦点
(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com