精英家教网 > 高中数学 > 题目详情

【题目】已知正方形ABCD的边长为4MAD的中点,动点N在正方形ABCD的内部或其边界移动,并且满足,则的取值范围是________

【答案】

【解析】

A为原点建立直角坐标系,可得A(0,0),B(4,0),C(4,4),D(0,4),M(0,2),可得N满足的方程x0),同时可得=,设z=,求出其取值范围可得答案.

解:

如图以A为原点建立直角坐标系,可得A(0,0),B(4,0),C(4,4),D(0,4),M(0,2)

N点坐标Nxy),可得=(xy-2)=xy),由,可得N满足的方程x0①,可得=(4-x,-y),=(4-x,4-y),可得==,将①代入②可得=

即求z=的取值范围,

可得(xy)满足x0),由图像可知当N取(00)点的时候z最大,,当直线z=与圆x0)相切时候,z取最小值,

设直线为y=-2x+b,则z=-2b+16

联立方程可得,可得,由其只有一个交点可得:

=0,即:,解得:b=b=b0,舍去),

z=-2b+16=14-2,即:

可得的取值范围:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6人.

(1)根据此频率分布直方图求该校参加秋季登山活动的教职工年龄的中位数;

(2)已知这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;

(3)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,平面平面,四边形是菱形,.

(1)求证:

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点坐标为,点,过点P作直线l交抛物线CAB两点,过AB分别作抛物线C的切线,两切线交于点Q,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问名不同性别的大学生是否爱好某项运动,得到如下的列联表:

爱好

40

20

不爱好

20

30

算得

参照附表,以下不正确的有(

附表:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

B.在犯错误的概率不超过的前提下,认为爱好该项运动与性别无关

C.以上的把握认为爱好该项运动与性别有关

D.以上的把握认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是边长为的菱形,,点E是棱BC的中点,,点P在平面ABCD的射影为O,F为棱PA上一点.

1求证:平面平面BCF;

2平面PDE,,求四棱锥的体积.

查看答案和解析>>

同步练习册答案