精英家教网 > 高中数学 > 题目详情

【题目】已知z为虚数,z+为实数.

(1)z-2为纯虚数,求虚数z.

(2)|z-4|的取值范围.

【答案】(1)z=2+3i或z=2-3i;(2)(1,5).

【解析】

试题(1)设,根据为纯虚数求得的值,再由为实数求出的值,即可得到复数

(2)由为实数且可得,由此求得的范围,根据复数的模的定义把要求的式子可化为,从而求得范围.

试题解析:

(1)z=x+yi(x,y∈R,y≠0),z-2=x-2+yi,

z-2为纯虚数得x=2,所以z=2+yi,z+=2+yi+=2+i∈R,y-=0,y=±3,所以z=2+3iz=2-3i.

(2)因为z+=x+yi+=x++i∈R,

所以y-=0,

因为y≠0,所以(x-2)2+y2=9,

(x-2)2<9,x∈(-1,5),

所以|z-4|=|x+yi-4|=

=

=∈(1,5).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆台的上、下底面半径分别为,母线长,从圆台母线的中点拉一条绳子绕圆台侧面转到在下底面,求:

1绳子的最短长度;

2在绳子最短时,上底圆周上的点到绳子的最短距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面,,点分别为的中点.

1)若,求三棱柱的体积;

2)证明:平面

3)请问当为何值时,平面,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+ax2+bx+cxx1时都取得极值,求ab的值与函数fx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an

Ⅱ)求数列{n2an}的前n项和Tn

Ⅲ)对任意nN*,使得 恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线l过点.

1)若直线l的纵截距和横截距相等,求直线l的方程;

2)若直线l与两坐标轴围成的三角形的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.

(Ⅰ)从抽取的12人中随机选取3人,记表示成绩优良的人数,求的分布列及数学期望;

(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到人的成绩是优良的可能性最大,求的值.

查看答案和解析>>

同步练习册答案