【题目】在平面立角坐标系中,过点的圆的圆心在轴上,且与过原点倾斜角为的直线相切.
(1)求圆的标准方程;
(2)点在直线上,过点作圆的切线、,切点分别为、,求经过、、、四点的圆所过的定点的坐标.
【答案】(1)(2)经过、、、四点的圆所过定点的坐标为、
【解析】
(1)先算出直线方程,根据相切和过点,圆心在轴上联立方程解得答案.
(2) 取线段的中点 ,经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为,将圆方程表示出来,联立方程组解得答案.
(1)由题意知,直线的方程为,整理为一般方程可得
由圆的圆心在轴上,可设圆的方程为,
由题意有,解得:,,
故圆的标准方程为.
(2)由圆的几何性质知,,,取线段的中点,由直角三角形的性质可知,故经过、、、四点的圆是以线段为直径的圆,
设点的坐标为,则点的坐标为
有
则以为直径的圆的方程为:,整理为
可得.
令,解得或,
故经过、、、四点的圆所过定点的坐标为、.
科目:高中数学 来源: 题型:
【题目】某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为( )米.
A. 75 B. 85 C. 100 D. 110
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C是圆O上不同的三点,线段CO与线段AB交于点D,若 =λ +μ (λ∈R,μ∈R),则λ+μ的取值范围是( )
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年底某购物网站为了解会员对售后服务(包括退货、换货、维修等)的满意度,从年下半年的会员中随机调查了个会员,得到会员对售后服务的满意度评分如下:
根据会员满意度评分,将会员的满意度从低到高分为三个等级:
满意度评分 | 低于分 | 分到分 | 不低于分 |
满意度等级 | 不满意 | 比较满意 | 非常满意 |
(1)根据这个会员的评分,估算该购物网站会员对售后服务比较满意和非常满意的频率;
(2)以(1)中的频率作为概率,假设每个会员的评价结果相互独立.
(i)若从下半年的所有会员中随机选取个会员,求恰好一个评分比较满意,另一个评分非常满意的概率;
(ii)若从下半年的所有会员中随机选取个会员,记评分非常满意的会员的个数为,求的分布列,数学期望及方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为( )
(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)
A. 天B. 天C. 天D. 天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.
(1)如果只安排生产书桌,可获利润多少?
(2)怎样安排生产可使所得利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com