精英家教网 > 高中数学 > 题目详情
两条异面直线a,b所成的角为60°,在直线a,b上分别取点A1,E和点A,F使AA1⊥a,且AA1⊥b(称AA1为异面直线a,b的公垂线).已知A1E=2,AF=3,EF=5,则线段AA1的长为   
【答案】分析:由两条异面直线a,b所成的角为60°,AA1⊥a,且AA1⊥b,A1E=2,AF=3,EF=5,知,故=+2+2+2,由此能求出线段AA1的长.
解答:解:∵两条异面直线a,b所成的角为60°,
AA1⊥a,且AA1⊥b,A1E=2,AF=3,EF=5,

=+2+2+2
设线段AA1的长x,
∴25=4+x2+9±2×2×3×3×cos60°,
所以x=,或x=3
故答案为:,或3
点评:本题考查点、线、面间距离的计算,是中档题.解题时要认真审题,仔细解答,注意向量法的合理运用.易错点是忽视符号导致出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两条异面直线a,b所成的角为
π
3
,直线l与a,直线l与b所成的角为θ,则θ的范围是(  )
A、[
π
6
π
2
]
B、[
π
3
π
2
]
C、[
π
6
6
]
D、[
π
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:两条异面直线a、b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a、b上分别取点E、F,设A1E=m,AF=n.求证:EF=
d2+m2+n2±2mncosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

两条异面直线a,b所成的角为60°,在直线a,b上分别取点A1,E和点A,F使AA1⊥a,且AA1⊥b(称AA1为异面直线a,b的公垂线).已知A1E=2,AF=3,EF=5,则线段AA1的长为
6
3
2
6
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:两条异面直线ab所成的角为θ,它们的公垂线段AA1的长度为d.在直线ab上分别取点EF,设A1E=mAF=n.求证:EF=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:两条异面直线a、b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a、b上分别取点E、F,设A1E=m,AF=n.求证:EF=数学公式

查看答案和解析>>

同步练习册答案