精英家教网 > 高中数学 > 题目详情

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,第四日行二十四,几朝才得到其关,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,其中第四天走了24.”问此人( )天后到达目的地.

A.4B.5C.6D.8

【答案】C

【解析】

根据题意可知此人行走路程为等比数列,由等比数列通项公式及前n项和公式的基本量计算即可得解.

设这个人第一天走了里路,天到达目的地,

从第二天起因脚痛每天走的路程为前一天的一半,

则第二天走了,第三天走了,第四天走了

由第四遍走了24里可知,解得 里,

故由等比数列求和公式可得

解得

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记抛物线的焦点为,点在抛物线上,,斜率为的直线与抛物线交于两点.

1)求的最小值;

2)若,直线的斜率都存在,且;探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在点处的切线方程为.

(Ⅰ)求的值;

(Ⅱ)已知,当时,恒成立,求实数的取值范围;

(Ⅲ)对于在中的任意一个常数,是否存在正数,使得,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项的和为,公差,若成等比数列,;数列满足:对于任意的,等式都成立.

1)求数列的通项公式;

2)证明:数列是等比数列;

3)若数列满足,试问是否存在正整数(其中),使成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为样本如下表所示.

脚掌长(x

20

21

22

23

24

25

26

27

28

29

身高(y

141

146

154

160

169

176

181

188

197

203

1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程

2)若某人的脚掌长为,试估计此人的身高;

3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.

(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,圆:,直线与圆交于两点.

) 求直线的方程;

)求直线的斜率的取值范围;

(Ⅲ)是否存在过点且垂直平分弦的直线?若存在,求直线斜率的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是每个大于的偶数可以表示为两个素数的和,如.现从不超过的素数中,随机选取两个不同的数(两个数无序).(注:不超过的素数有

1)列举出满足条件的所有基本事件;

2)求选取的两个数之和等于事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机调查某社区80个人,以研究这一社区居民在晚上8点至十点时间段的休闲方式与性别的关系,得到下面的数据表:

1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,求这3人中至少有1人是以看书为休闲方式的概率;

2)根据以上数据,能否有99%的把握认为“在晚上8点至十点时间段的休闲方式与性别有关系?”

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案