分析 (I)求出原函数的导函数,由曲线在x=1处的切线的斜率求得a,再由曲线和直线在x=1处的函数值相等求得b;
(II)求出曲线y=f(x)在x=2处的切线方程,即可求曲线y=f(x)在x=2处的切线与两坐标轴围成的三角形面积.
解答 解:(I)由f(x)=x3-ax+b,得y′=3x2-a,
由题意可知y′|x=1=3-a=1,即a=2.
又当x=1时,y=0,
∴13-1×2+b=0,即b=1.
(II)f(x)=x3-2x+1,f′(x)=3x2-2,
x=2时,f(2)=5,f′(2)=10,
∴曲线y=f(x)在x=2处的切线方程为y-5=10(x-2),即10x-y-15=0,
与两坐标轴的交点为(1.5,0),(0,-15),
∴切线与两坐标轴围成的三角形面积S=$\frac{1}{2}×1.5×15$=$\frac{45}{4}$.
点评 本题考查利用导数研究在曲线上某点处的切线方程,在曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)>0恒成立 | B. | f(x)<0恒成立 | ||
C. | f(x)的最大值为0 | D. | f(x)与0的大小关系不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 50米 | B. | 25$\sqrt{3}$米 | C. | 25米 | D. | 50$\sqrt{3}$米 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a∥α,b∥β,则a∥b | B. | 若a?α,b?β,a∥b,则α∥β | ||
C. | 若a∥b,b∥α,α∥β,则a∥β | D. | 若a⊥α,a⊥β,b⊥β,则b⊥α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com