精英家教网 > 高中数学 > 题目详情
7.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤-2}\\{\frac{x}{2}.x>-2}\end{array}\right.$的定义域为R,值域为[-4,+∞).

分析 定义域显然为R,根据二次函数和一次函数单调性分别求出每段上函数f(x)的范围,然后求并集即可得出f(x)的值域.

解答 解:定义域为R;
①x≤-2时,f(x)=x2+4x=(x+2)2-4≥-4;
②x>-2时,$f(x)=\frac{x}{2}>-1$;
∴f(x)≥-4;
∴该函数的值域为[-4,+∞).
故答案为:R,[-4,+∞).

点评 考查函数定义域、值域的概念,以及二次函数、一次函数的单调性,分段函数的值域的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:an+1=f(an),n∈N*
(1)f(x)=x-sinx,0<a1<1,求证:0<an+1<an<1;
(2)f(x)=x3-x2+$\frac{x}{2}$+$\frac{1}{4}$,试确定一个首项a1,使得数列{an}为单调数列,并证明你的结论;
(3)f(x)=$\frac{1}{4}$(x2+3),a1>0,若对一切n∈N*,都有an+1>an,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两等差数列{an}和{bn},前n项和分别为Sn,Tn,若$\frac{{a}_{n}}{{b}_{n}}=\frac{4n+2}{2n-5}$,则$\frac{{S}_{19}}{{T}_{19}}$=$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$\left\{{\begin{array}{l}{{x^2}+1,x≤0}\\{\sqrt{x},x>0}\end{array}}\right.$,则f(f(-2))=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“$?x∈(0,\frac{π}{2})$,sinx<1”的否定是假命题.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求值:sin$\frac{π}{3}$tan$\frac{π}{3}$+tan$\frac{π}{6}$cos$\frac{π}{6}$-tan$\frac{π}{4}$cos$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,先用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$和$\overrightarrow{DB}$,并回答:当$\overrightarrow{a}$,$\overrightarrow{b}$分别满足什么条件时,四边形ABCD为矩形、菱形、正方形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知实数x,y满足关系式xy-x-y=1,求x2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$,
(1)求作:$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$.
(2)设|$\overrightarrow{a}$|=2.$\overrightarrow{e}$为单位向量,求|$\overrightarrow{a}$+$\overrightarrow{e}$|的最大值.

查看答案和解析>>

同步练习册答案