精英家教网 > 高中数学 > 题目详情
2.已知下列三角形数表假设第行的第二个数为an(n≥2,n∈N*).
(1)依次写出第六行的所有数字;
(2)归纳出an+1与an的关系式并求出an的通项公式;
(3)设an•bn=1,求证:b1+b2+b3+…+bn<2.

分析 (1)每行的第一个数为所在的行数,从第二项起,每个元素为上行两个相邻元素的和,即可求得第六行的所有数字;
(2)由题意可知an+1=an+n(n≥2),a2=2,则an-an-1=n-1(n≥3),累加即可求得an,当n=2时,${a_2}=\frac{1}{2}×{2^2}-\frac{1}{2}×2+1\;\;=2$,也满足上述等式,即可求得an的通项公式;
(3)由题意可知:${b_n}=\frac{2}{{{n^2}-n+2}}<\frac{2}{{{n^2}-n}}=2(\frac{1}{n-1}-\frac{1}{n})$,采用“裂项法”即可求得b1+b2+b3+…+bn=2(1-$\frac{1}{n}$)$2(1-\frac{1}{n})<2$<2.

解答 解:(1)第六行的所有6个数字分别是6,16,25,25,16,6;--------(2分)
(2)依题意an+1=an+n(n≥2),a2=2---(4分)
an-an-1=n-1(n≥3),
a3-a2=2an=a2+(a3-a2)+(a4-a3)+…+(an-an-1),
=$2+2+3+…+(n-1)=2+\frac{(n-2)(n+1)}{2}$,
∴${a_n}=\frac{1}{2}{n^2}-\frac{1}{2}n+1\;\;\;(n≥3)$;-------(7分)
当n=2时,${a_2}=\frac{1}{2}×{2^2}-\frac{1}{2}×2+1\;\;=2$,
也满足上述等式
所以${a_n}=\frac{1}{2}{n^2}-\frac{1}{2}n+1\;\;\;(n≥2)$-------(8分)
(3)证明:因为anbn=1,则${b_n}=\frac{2}{{{n^2}-n+2}}<\frac{2}{{{n^2}-n}}=2(\frac{1}{n-1}-\frac{1}{n})$-------(11分)
${b_2}+{b_3}+{b_4}+…+{b_n}<2[(\frac{1}{1}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n-1}-\frac{1}{n})]$=$2(1-\frac{1}{n})<2$,
∴b1+b2+b3+…+bn<2.--(12分)

点评 本题考查数列的综合应用,考查数列通项公式的求法,“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,Sn表示前n项和,若a3=2S2+3,a4=2S3+3,则公比q=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.做一个体积为32m3,高为2m的长方体纸盒.
(1)若用x表示长方体底面一边的长,S表示长方体的表面积,写出S关于x的函数关系式;
(2)当x取什么值时,做一个这样的长方体纸盒用纸最少?最少用纸多少m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)如果a,b都是正数,且a≠b,求证:$\frac{a}{{\sqrt{b}}}+\frac{b}{{\sqrt{a}}}>\sqrt{a}+\sqrt{b}$
(2)数列{an}中,已知an>0且(a1+a2+…+an2=a13+a23+…+an3,求出a1,a2,a3,并猜想an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线x+(2-a)y+1=0与圆x2+y2-2y=0相切,则a的值为(  )
A.1或-1B.2或-2C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.角α的终边在第二象限,那么$\frac{α}{3}$的终边不可能在的象限是第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,三棱锥P-ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA=$\frac{3}{2}$,PB=$\frac{3\sqrt{3}}{2}$,则三棱锥P-ABC的外接球的表面积为13π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数fa(x)=|x|+|x-a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一fa(x)的图象上的点的全体组成的图形的面积为$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案