精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面ABCD是矩形,平面ABCD,,E,F是线段BC,AB的中点.

证明:

在线段PA上确定点G,使得平面PED,请说明理由.

【答案】1)见解析(2)见解析

【解析】

1)由PA⊥平面ABCD先证明DEPA.连接AE,由勾股定理证明DEAE,通过证明DE⊥平面PAE,即可得证PEED

2)过点FFHEDAD于点H,再过点HHGDPPA于点G,通过证明平面平面平面PED,然后证明平面PED

解:1证明:由平面ABCD,得连接AE

因为

所以由勾股定理可得

所以平面PAE

因此

2过点FAD于点H,则平面PED,且有

再过点HPA于点G,则平面PED,且

由面面平行的判定定理可得平面平面PED

进而由面面平行的性质得到平面PED

从而确定G点位置

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有人,第三组中没有疗效的有人,则第三组中有疗效的人数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,集合

时,求集合和集合B

若集合为单元素集,求实数m的取值集合;

若集合的元素个数为个,求实数m的取值集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推测到一个一般的结论:对于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则,将某些整数染成红色,先染1;再染3个偶数2,4,6;再染6后面最邻近的5个连续奇数7,9,11,13,15;再染15后面最邻近的7个连续偶数16,18,20,22,24,26,28;再染此后最邻近的9个连续奇数29,31,…,45;按此规则一直染下去,得到一红色子数列:1,2,4,6,7,9,11,13,15,16,……,则在这个红色子数列中,由1开始的第2019个数是( )

A. 3972 B. 3974 C. 3991 D. 3993

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,是棱的中点,点 在棱上,且为实数).

(1)求二面角的余弦值;

(2)当时,求直线与平面所成角的正弦值的大小;

(3)求证:直线与直线不可能垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:)制成如图所示的茎叶图.考虑以下结论:

甲地该月14时的平均气温低于乙地该月14时的平均气温;

甲地该月14时的平均气温高于乙地该月14时的平均气温;

甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;

甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.

其中根据茎叶图能得到的统计结论的标号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张三同学从每年生日时对自己的身高测量后记录如表:

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

(1)求身高关于年龄的线性回归方程;(可能会用到的数据:(cm))

(2)利用(1)中的线性回归方程,分析张三同学岁起到岁身高的变化情况,如 岁之前都符合这一变化,请预测张三同学 岁时的身高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若,函数的最大值为,最小值为,求的值;

(2)当时,函数的最大值为,求的值.

查看答案和解析>>

同步练习册答案