精英家教网 > 高中数学 > 题目详情
18.已知曲线y=$\frac{a}{{e}^{x}+1}$(其中e为自然对数的底数)在x=0处的切线的倾斜角为135°,则实数a的值是4.

分析 求出函数的导数,求得切线的斜率,由直线的斜率公式,计算即可得到所求值.

解答 解:y=$\frac{a}{{e}^{x}+1}$的导数为y′=-$\frac{a{e}^{x}}{({e}^{x}+1)^{2}}$,
在x=0处的切线的倾斜角为135°,
即有k=-$\frac{a}{4}$=-1,
解得a=4.
故答案为:4.

点评 本题考查导数的运用:求切线的斜率,考查直线的斜率公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a,b是实数,命题p:“a+b>5”,命题q:“$\left\{\begin{array}{l}{a>2}\\{b>3}\end{array}\right.$”,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,设α∈(0,π)且$α≠\frac{π}{2}$,当∠xOy=α时,定义平面坐标系xOy为斜坐标系,在斜坐标系中,任意一点P的斜坐标这样定义:e1,e2分别为x轴、y轴正方向相同的单位向量,若$\overrightarrow{OP}=x{e_1}+y{e_2}$,则记为$\overrightarrow{OP}=(x,y)$,那么在以下的结论中,正确的有(2)(4)(填上所有正确结论的序号).
(1)设a=(m,n),则$|a|=\sqrt{{m^2}+{n^2}}$;
(2)设a=(m,n),b=(s,t),若a=b,则m=s,n=t;
(3)设a=(m,n),b=(s,t),若a⊥b,则ms+nt=0;
(4)设a=(m,n),b=(s,t),若a∥b,则mt-ns=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+$\frac{a}{2}$lnx.
(1)求f(x)的单调区间;
(2)是否存在实数a,使f(x)在(0,1]上的最小值是0,若存在,求实数a的值,若不存在,说明理由;
(3)已知g(x)=ax(x∈(0,1]),当a<0时,对于任意的x1∈(0,+∞),存在x2∈(0,1],使得f(x1)≥g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设命题p:?x∈[1,2],$\frac{1}{2}{x^2}$-lnx-a≥0,命题q:?x0∈R,使得x02+2ax0-8-6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.斜率为k(k>0)的直线l与抛物线C:y2=4x交于A,B两点,O为原点,M是线段AB的中点,F为C的焦点,△OFM的面积等于2,则k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一轮渡向北以航速20km/h航行,此次吹来西方,风速5m/s,用作图法求轮渡的实际航行速度和方向.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R.e=2.71828…,设g(x)是函数f(x)的导函数.
(1)求函数g(x)的单调区间;
(2)求函数g(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A满足条件:若a∈A,则f(a)=$\frac{2a}{2a+1}$∈A,且f(f(a))∈A,依此类推.f(f(f(a)))∈A,…,依此类推.
(1)若集合A为单元素集,求a和A;
(2)满足条件的集合A中是否可有两个元素?若存在,求出集合A;若不存在,说明理由;
(3)用描述法写出一个满足条件的无穷集合A.

查看答案和解析>>

同步练习册答案